493 research outputs found

    H2 Formation on Interstellar Grains in Different Physical Regimes

    Get PDF
    An analysis of the kinetics of H2 formation on interstellar dust grains is presented using rate equations. It is shown that semi-empirical expressions that appeared in the literature represent two different physical regimes. In particular, it is shown that the expression given by Hollenbach, Werner and Salpeter [ApJ, 163, 165 (1971)] applies when high flux, or high mobility, of H atoms on the surface of a grain, makes it very unlikely that H atoms evaporate before they meet each other and recombine. The expression of Pirronello et al.\ [ApJ, 483, L131 (1997)] -- deduced on the basis of accurate measurements on realistic dust analogue -- applies to the opposite regime (low coverage and low mobility). The implications of this analysis for the understanding of the processes dominating in the Interstellar Medium are discussed.Comment: 4 pages, MN styl

    Experiments on Quantum and Thermal Desorption from ^4He Films

    Get PDF
    Desorption of He atoms from thin films may be resolved experimentally into quantum and thermal components. We show that quantum desorption becomes the dominant part of the signal in submonolayer films. We also show that, when all effects of collisions between desorbed atoms are eliminated, quantum desorption is not focused normal to the surface of optically polished sapphire crystals

    Use of Laboratory Data to Model Interstellar Chemistry

    Get PDF
    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments

    Measurement of the Kinetic Energy of Hydrogen Molecules Desorbing from Amorphous Water Ice

    Get PDF
    A hydrogen molecule that is formed on an interstellar grain might retain some of the 4.48 eV of energy that is released in the recombination reaction of two hydrogen atoms. We set up an experiment to measure the translational (kinetic) energy of hydrogen molecules after they are formed on and are ejected from the surface of an interstellar dust grain analog. Here we report the first measurements of the kinetic energy of molecular deuterium as it leaves the surface of an amorphous water sample. The astrophysical implications of such measurements are discussed


    No full text
    International audienceThe most efficient mechanism of the formation of molecular hydrogen in the current universe is by association of hydrogen atoms on the surface of interstellar dust grains. The details of the processes of its formation and release from the grain are of great importance in the physical and chemical evolution of the space environmentswhere it takes place. Themain puzzle is still the fate of the 4.5 eV released in H2 formation and whether it goes into internal energy (rovibrational excitation), translational kinetic energy, or heating of the grain. The modality of the release of this energy affects the dynamics of the ISM and its evolution toward star formation.We present results of the detection of the rovibrational states of the just-formed H2 as it leaves the surface of a silicate.We find that rovibrationally excited molecules are ejected into the gas phase immediately after formation over a much wider range of grain temperatures than anticipated. Our results can be explained by the presence of twomechanisms ofmolecule formation that operate in partially overlapping ranges of grain temperature. A preliminary analysis of the relative importance of these two mechanisms is given. These unexpected findings, which will be complemented with experiments on the influence of factors such as silicate morphology, should be of great interest to the astrophysics and astrochemistry communities

    Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling

    Full text link
    Molecular hydrogen has an important role in the early stages of star formation as well as in the production of many other molecules that have been detected in the interstellar medium. In this review we show that it is now possible to study the formation of molecular hydrogen in simulated astrophysical environments. Since the formation of molecular hydrogen is believed to take place on dust grains, we show that surface science techniques such as thermal desorption and time-of-flight can be used to measure the recombination efficiency, the kinetics of reaction and the dynamics of desorption. The analysis of the experimental results using rate equations gives useful insight on the mechanisms of reaction and yields values of parameters that are used in theoretical models of interstellar cloud chemistry.Comment: 23 pages, 7 figs. Published in the J. Phys.: Conf. Se

    Probing the metal-nonmetal transition in thin metal overlayers using resonant photoemission

    Get PDF
    We have studied one and two monolayers of barium on Ni(111) and of mercury on Cu(100). Using resonant photoemission, we have found core excited electrons become delocalized with increasing barium coverage. Similarly, upon formation of the mercury bilayer (as determined by low-energy electron diffraction and by atom-beam scattering), there is a substantial increase in the screening of the photohole. A transition of the electronic structure akin to a metal-nonmetal (metal-insulator) transition is apparent in these final-state effects. The band structure for Hg is similar to the band structure expected for a free-standing film with a free-electron sd band. The delocalization of the core excited electrons resembles the exciton unbinding that occurs at the metal-nonmetal Mott transition
    • ‚Ķ