31 research outputs found
Module decompositions via Rickart modules
This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(·)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(RR) ⊕ I with I a hereditary Rickart module are obtained
Duo property for rings by the quasinilpotent perspective
In this paper, we focus on the duo ring property via quasinilpotent elements, which gives a new kind of generalizations of commutativity. We call this kind of rings qnil-duo. Firstly, some properties of quasinilpotents in a ring are provided. Then the set of quasinilpotents is applied to the duo property of rings, in this perspective, we introduce and study right (resp., left) qnil-duo rings. We show that this concept is not left-right symmetric. Among others, it is proved that if the Hurwitz series ring is right qnil-duo, then is right qnil-duo. Every right qnil-duo ring is abelian. A right qnil-duo exchange ring has stable range 1
Symmetric modules over their endomorphism rings
Let R be an arbitrary ring with identity and M a right
R-module with S=EndR(M). In this paper, we study right
R-modules M having the property for f,g∈EndR(M) and
for m∈M, the condition fgm=0 implies gfm=0. We prove
that some results of symmetric rings can be extended to symmetric
modules for this general setting
Symmetric modules over their endomorphism rings
Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). In this paper, we study right R-modules M having the property for f, g ∈ EndR(M) and for m ∈ M, the condition fgm = 0 implies gfm = 0. We prove that some results of symmetric rings can be extended to symmetric modules for this general setting. © Journal “Algebra and Discrete Mathematics”
Generalized symmetric rings
In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let R be a ring with identity. A ring R is called central symmetric if for any a, b,c∈R, abc=0 implies bac belongs to the center of R. Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric. We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring R[x] is central symmetric if and only if the Laurent polynomial ring R[x,x−1] is central symmetric. Among others, it is shown that for a right principally projective ring R, R is central symmetric if and only if R[x]/(xn) is central Armendariz, where n≥2 is a natural number and (xn) is the ideal generated by x
A generalization of reduced rings
Let R be a ring with identity. We introduce a class of rings which is a generalization of reduced rings. A ring R is called central rigid if for any a, b ? R, a2b = 0 implies ab belongs to the center of R. Since every reduced ring is central rigid, we study sufficient conditions for central rigid rings to be reduced. We prove that some results of reduced rings can be extended to central rigid rings for this general setting, in particular, it is shown that every reduced ring is central rigid, every central rigid ring is central reversible, central semicommutative, 2-primal, abelian and so directly finite
Central quasipolar rings
In this paper, we introduce a kind of quasipolarity notion for rings, namely, an element a of a ring R is called central quasipolar if there exists p2 = p ∈ R such that a + p is central in R, and the ring R is called central quasipolar if every element of R is central quasipolar. We give many characterizations and investigate general properties of central quasipolar rings. We determine the conditions that some subrings of upper triangular matrix rings are central quasipolar. A diagonal matrix over a local ring is characterized in terms of being central quasipolar. We prove that the class of central quasipolar rings lies between the classes of commutative rings and Dedekind nite rings, and a ring R is central quasipolar if and only if it is central clean. Further we show that several results of quasipolar rings can be extended to central quasipolar rings in this general setting
A nil approach to symmetricity of rings
We introduce a weakly symmetric ring which is a generalization of a symmetric ring and a strengthening of both a GWS ring and a weakly reversible ring, and investigate properties of the class of this kind of rings. A ring R is called weakly symmetric if for any a, b, c 2 R, abc being nilpotent implies that Racrb is a nil left ideal of R for each r 2 R. Examples are given to show that weakly symmetric rings need to be neither semicommutative nor symmetric. It is proved that the class of weakly symmetric rings lies also between those of 2-primal rings and directly finite rings. We show that for a nil ideal I of a ring R, R is weakly symmetric if and only if R=I is weakly symmetric. If R[x] is weakly symmetric, then R is weakly symmetric, and R[x] is weakly symmetric if and only if R[x; x-1] is weakly symmetric. We prove that a weakly symmetric ring which satises Köthe's conjecture is exactly an NI ring. We also deal with some extensions of weakly symmetric rings such as a Nagata extension, a Dorroh extension. © 2018 Allahabad Mathematical Society