6 research outputs found
Towards Bilateral Client Selection in Federated Learning Using Matching Game Theory
Federated Learning (FL) is a novel distributed privacy-preserving learning paradigm, which enables the collaboration among several devices. However, selecting the participants that would contribute to this collaborative training is highly challenging. Adopting a random selection strategy would entail substantial problems due to the heterogeneity in terms of data quality and resources across the participants. To overcome this problem, we propose an intelligent client selection approach for federated learning on IoT devices using matching game theory. Our solution involves the design of: (1) preference functions for the client IoT devices and federated servers to allow them to rank each other according to several criteria such as accuracy and price, and (2) intelligent matching algorithms that take into account the preferences of both parties in their design. Based on our simulation findings, our strategy surpasses the VanillaFL selection approach in terms of maximizing both the revenues of the client devices and accuracy of the global federated learning model
FedMint: Intelligent Bilateral Client Selection in Federated Learning with Newcomer IoT Devices
Federated Learning (FL) is a novel distributed privacy-preserving learning paradigm, which enables the collaboration among several participants (e.g., Internet of Things devices) for the training of machine learning models. However, selecting the participants that would contribute to this collaborative training is highly challenging. Adopting a random selection strategy would entail substantial problems due to the heterogeneity in terms of data quality, and computational and communication resources across the participants. Although several approaches have been proposed in the literature to overcome the problem of random selection, most of these approaches follow a unilateral selection strategy. In fact, they base their selection strategy on only the federated server’s side, while overlooking the interests of the client devices in the process. To overcome this problem, we present in this paper FedMint, an intelligent client selection approach for federated learning on IoT devices using game theory and bootstrapping mechanism. Our solution involves the design of: (1) preference functions for the client IoT devices and federated servers to allow them to rank each other according to several factors such as accuracy and price, (2) intelligent matching algorithms that take into account the preferences of both parties in their design, and (3) bootstrapping technique that capitalizes on the collaboration of multiple federated servers in order to assign initial accuracy value for the newly connected IoT devices. We compare our approach against the VanillaFL selection process as well as other state-of-the-art approach and showcase the superiority of our proposal
The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions
The Metaverse offers a second world beyond reality, where boundaries are
non-existent, and possibilities are endless through engagement and immersive
experiences using the virtual reality (VR) technology. Many disciplines can
benefit from the advancement of the Metaverse when accurately developed,
including the fields of technology, gaming, education, art, and culture.
Nevertheless, developing the Metaverse environment to its full potential is an
ambiguous task that needs proper guidance and directions. Existing surveys on
the Metaverse focus only on a specific aspect and discipline of the Metaverse
and lack a holistic view of the entire process. To this end, a more holistic,
multi-disciplinary, in-depth, and academic and industry-oriented review is
required to provide a thorough study of the Metaverse development pipeline. To
address these issues, we present in this survey a novel multi-layered pipeline
ecosystem composed of (1) the Metaverse computing, networking, communications
and hardware infrastructure, (2) environment digitization, and (3) user
interactions. For every layer, we discuss the components that detail the steps
of its development. Also, for each of these components, we examine the impact
of a set of enabling technologies and empowering domains (e.g., Artificial
Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on
its advancement. In addition, we explain the importance of these technologies
to support decentralization, interoperability, user experiences, interactions,
and monetization. Our presented study highlights the existing challenges for
each component, followed by research directions and potential solutions. To the
best of our knowledge, this survey is the most comprehensive and allows users,
scholars, and entrepreneurs to get an in-depth understanding of the Metaverse
ecosystem to find their opportunities and potentials for contribution