49 research outputs found

    Collaborative Summarization of Topic-Related Videos

    Full text link
    Large collections of videos are grouped into clusters by a topic keyword, such as Eiffel Tower or Surfing, with many important visual concepts repeating across them. Such a topically close set of videos have mutual influence on each other, which could be used to summarize one of them by exploiting information from others in the set. We build on this intuition to develop a novel approach to extract a summary that simultaneously captures both important particularities arising in the given video, as well as, generalities identified from the set of videos. The topic-related videos provide visual context to identify the important parts of the video being summarized. We achieve this by developing a collaborative sparse optimization method which can be efficiently solved by a half-quadratic minimization algorithm. Our work builds upon the idea of collaborative techniques from information retrieval and natural language processing, which typically use the attributes of other similar objects to predict the attribute of a given object. Experiments on two challenging and diverse datasets well demonstrate the efficacy of our approach over state-of-the-art methods.Comment: CVPR 201

    Unsupervised Adaptive Re-identification in Open World Dynamic Camera Networks

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Existing approaches have concentrated on either designing the best feature representation or learning optimal matching metrics in a static setting where the number of cameras are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re-identification problem, where a new camera may be temporarily inserted into an existing system to get additional information. To address such a novel and very practical problem, we propose an unsupervised adaptation scheme for re-identification models in a dynamic camera network. First, we formulate a domain perceptive re-identification method based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt with a newly introduced target camera, without requiring a very expensive training phase. Second, we introduce a transitive inference algorithm for re-identification that can exploit the information from best source camera to improve the accuracy across other camera pairs in a network of multiple cameras. Extensive experiments on four benchmark datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art unsupervised learning based alternatives whilst being extremely efficient to compute.Comment: CVPR 2017 Spotligh
    corecore