367 research outputs found
Linear Precoding in Cooperative MIMO Cellular Networks with Limited Coordination Clusters
In a cooperative multiple-antenna downlink cellular network, maximization of
a concave function of user rates is considered. A new linear precoding
technique called soft interference nulling (SIN) is proposed, which performs at
least as well as zero-forcing (ZF) beamforming. All base stations share channel
state information, but each user's message is only routed to those that
participate in the user's coordination cluster. SIN precoding is particularly
useful when clusters of limited sizes overlap in the network, in which case
traditional techniques such as dirty paper coding or ZF do not directly apply.
The SIN precoder is computed by solving a sequence of convex optimization
problems. SIN under partial network coordination can outperform ZF under full
network coordination at moderate SNRs. Under overlapping coordination clusters,
SIN precoding achieves considerably higher throughput compared to myopic ZF,
especially when the clusters are large.Comment: 13 pages, 5 figure
The Impact of CSI and Power Allocation on Relay Channel Capacity and Cooperation Strategies
Capacity gains from transmitter and receiver cooperation are compared in a
relay network where the cooperating nodes are close together. Under
quasi-static phase fading, when all nodes have equal average transmit power
along with full channel state information (CSI), it is shown that transmitter
cooperation outperforms receiver cooperation, whereas the opposite is true when
power is optimally allocated among the cooperating nodes but only CSI at the
receiver (CSIR) is available. When the nodes have equal power with CSIR only,
cooperative schemes are shown to offer no capacity improvement over
non-cooperation under the same network power constraint. When the system is
under optimal power allocation with full CSI, the decode-and-forward
transmitter cooperation rate is close to its cut-set capacity upper bound, and
outperforms compress-and-forward receiver cooperation. Under fast Rayleigh
fading in the high SNR regime, similar conclusions follow. Cooperative systems
provide resilience to fading in channel magnitudes; however, capacity becomes
more sensitive to power allocation, and the cooperating nodes need to be closer
together for the decode-and-forward scheme to be capacity-achieving. Moreover,
to realize capacity improvement, full CSI is necessary in transmitter
cooperation, while in receiver cooperation optimal power allocation is
essential.Comment: Accepted for publication in IEEE Transactions on Wireless
Communication
Transmit Signal and Bandwidth Optimization in Multiple-Antenna Relay Channels
Transmit signal and bandwidth optimization is considered in multiple-antenna
relay channels. Assuming all terminals have channel state information, the
cut-set capacity upper bound and decode-and-forward rate under full-duplex
relaying are evaluated by formulating them as convex optimization problems. For
half-duplex relays, bandwidth allocation and transmit signals are optimized
jointly. Moreover, achievable rates based on the compress-and-forward
transmission strategy are presented using rate-distortion and Wyner-Ziv
compression schemes. It is observed that when the relay is close to the source,
decode-and-forward is almost optimal, whereas compress-and-forward achieves
good performance when the relay is close to the destination.Comment: 16 pages, 10 figure
Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities
Throughput and per-packet delay can present strong trade-offs that are
important in the cases of delay sensitive applications.We investigate such
trade-offs using a random linear network coding scheme for one or more
receivers in single hop wireless packet erasure broadcast channels. We capture
the delay sensitivities across different types of network applications using a
class of delay metrics based on the norms of packet arrival times. With these
delay metrics, we establish a unified framework to characterize the rate and
delay requirements of applications and optimize system parameters. In the
single receiver case, we demonstrate the trade-off between average packet
delay, which we view as the inverse of throughput, and maximum ordered
inter-arrival delay for various system parameters. For a single broadcast
channel with multiple receivers having different delay constraints and feedback
delays, we jointly optimize the coding parameters and time-division scheduling
parameters at the transmitters. We formulate the optimization problem as a
Generalized Geometric Program (GGP). This approach allows the transmitters to
adjust adaptively the coding and scheduling parameters for efficient allocation
of network resources under varying delay constraints. In the case where the
receivers are served by multiple non-interfering wireless broadcast channels,
the same optimization problem is formulated as a Signomial Program, which is
NP-hard in general. We provide approximation methods using successive
formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure
Distortion Minimization in Gaussian Layered Broadcast Coding with Successive Refinement
A transmitter without channel state information (CSI) wishes to send a
delay-limited Gaussian source over a slowly fading channel. The source is coded
in superimposed layers, with each layer successively refining the description
in the previous one. The receiver decodes the layers that are supported by the
channel realization and reconstructs the source up to a distortion. The
expected distortion is minimized by optimally allocating the transmit power
among the source layers. For two source layers, the allocation is optimal when
power is first assigned to the higher layer up to a power ceiling that depends
only on the channel fading distribution; all remaining power, if any, is
allocated to the lower layer. For convex distortion cost functions with convex
constraints, the minimization is formulated as a convex optimization problem.
In the limit of a continuum of infinite layers, the minimum expected distortion
is given by the solution to a set of linear differential equations in terms of
the density of the fading distribution. As the bandwidth ratio b (channel uses
per source symbol) tends to zero, the power distribution that minimizes
expected distortion converges to the one that maximizes expected capacity.
While expected distortion can be improved by acquiring CSI at the transmitter
(CSIT) or by increasing diversity from the realization of independent fading
paths, at high SNR the performance benefit from diversity exceeds that from
CSIT, especially when b is large.Comment: Accepted for publication in IEEE Transactions on Information Theor
Minimum Expected Distortion in Gaussian Layered Broadcast Coding with Successive Refinement
A transmitter without channel state information (CSI) wishes to send a
delay-limited Gaussian source over a slowly fading channel. The source is coded
in superimposed layers, with each layer successively refining the description
in the previous one. The receiver decodes the layers that are supported by the
channel realization and reconstructs the source up to a distortion. In the
limit of a continuum of infinite layers, the optimal power distribution that
minimizes the expected distortion is given by the solution to a set of linear
differential equations in terms of the density of the fading distribution. In
the optimal power distribution, as SNR increases, the allocation over the
higher layers remains unchanged; rather the extra power is allocated towards
the lower layers. On the other hand, as the bandwidth ratio b (channel uses per
source symbol) tends to zero, the power distribution that minimizes expected
distortion converges to the power distribution that maximizes expected
capacity. While expected distortion can be improved by acquiring CSI at the
transmitter (CSIT) or by increasing diversity from the realization of
independent fading paths, at high SNR the performance benefit from diversity
exceeds that from CSIT, especially when b is large.Comment: To appear in the proceedings of the 2007 IEEE International Symposium
on Information Theory, Nice, France, June 24-29, 200
Capacity Gain from Two-Transmitter and Two-Receiver Cooperation
Capacity improvement from transmitter and receiver cooperation is
investigated in a two-transmitter, two-receiver network with phase fading and
full channel state information available at all terminals. The transmitters
cooperate by first exchanging messages over an orthogonal transmitter
cooperation channel, then encoding jointly with dirty paper coding. The
receivers cooperate by using Wyner-Ziv compress-and-forward over an analogous
orthogonal receiver cooperation channel. To account for the cost of
cooperation, the allocation of network power and bandwidth among the data and
cooperation channels is studied. It is shown that transmitter cooperation
outperforms receiver cooperation and improves capacity over non-cooperative
transmission under most operating conditions when the cooperation channel is
strong. However, a weak cooperation channel limits the transmitter cooperation
rate; in this case receiver cooperation is more advantageous.
Transmitter-and-receiver cooperation offers sizable additional capacity gain
over transmitter-only cooperation at low SNR, whereas at high SNR transmitter
cooperation alone captures most of the cooperative capacity improvement.Comment: Accepted for publication in IEEE Transactions on Information Theor
- …