85,306 research outputs found

    Novel discrete symmetries in the general N = 2 supersymmetric quantum mechanical model

    Full text link
    In addition to the usual supersymmetric (SUSY) continuous symmetry transformations for the general N = 2 SUSY quantum mechanical model, we show the existence of a set of novel discrete symmetry transformations for the Lagrangian of the above SUSY quantum mechanical model. Out of all these discrete symmetry transformations, a unique discrete transformation corresponds to the Hodge duality operation of differential geometry and the above SUSY continuous symmetry transformations (and their anticommutator) provide the physical realizations of the de Rham cohomological operators of differential geometry. Thus, we provide a concrete proof of our earlier conjecture that any arbitrary N= 2 SUSY quantum mechanical model is an example of a Hodge theory where the cohomological operators find their physical realizations in the language of symmetry transformations of this theory. Possible physical implications of our present study are pointed out, too.Comment: LaTeX file, 9 pages, EPJC format, To appear in EPJ

    A digital interface for Gaussian relay networks: lifting codes from the discrete superposition model to Gaussian relay networks

    Full text link
    For every Gaussian relay network with a single source-destination pair, it is known that there exists a corresponding deterministic network called the discrete superposition network that approximates its capacity uniformly over all SNR's to within a bounded number of bits. The next step in this program of rigorous approximation is to determine whether coding schemes for discrete superposition models can be lifted to Gaussian relay networks with a bounded rate loss independent of SNR. We establish precisely this property and show that the superposition model can thus serve as a strong surrogate for designing codes for Gaussian relay networks. We show that a code for a Gaussian relay network, with a single source-destination pair and multiple relay nodes, can be designed from any code for the corresponding discrete superposition network simply by pruning it. In comparison to the rate of the discrete superposition network's code, the rate of the Gaussian network's code only reduces at most by a constant that is a function only of the number of nodes in the network and independent of channel gains. This result is also applicable for coding schemes for MIMO Gaussian relay networks, with the reduction depending additionally on the number of antennas. Hence, the discrete superposition model can serve as a digital interface for operating Gaussian relay networks.Comment: 5 pages, 2010 IEEE Information Theory Workshop, Cair

    Effect of optical lattice potentials on the vortices in rotating dipolar Bose-Einstein condensates

    Full text link
    We study the interplay of dipole-dipole interaction and optical lattice (OL) potential of varying depths on the formation and dynamics of vortices in rotating dipolar Bose-Einstein condensates. By numerically solving the time-dependent quasi-two dimensional Gross-Pitaevskii equation, we analyse the consequence of dipole-dipole interaction on vortex nucleation, vortex structure, critical rotation frequency and number of vortices for a range of OL depths. Rapid creation of vortices has been observed due to supplementary symmetry breaking provided by the OL in addition to the dipolar interaction. Also the critical rotation frequency decreases with an increase in the depth of the OL. Further, at lower rotation frequencies the number of vortices increases on increasing the depth of OL while it decreases at higher rotation frequencies. This variation in the number of vortices has been confirmed by calculating the rms radius, which shrinks in deep optical lattice at higher rotation frequencies.Comment: 10 pages, 7 figure
    corecore