4,702 research outputs found

    Electron Monte Carlo Simulations of Nanoporous Si Thin Films -- The Influence of Pore-Edge Charges

    Full text link
    Electron transport within nanostructures can be important to varied engineering applications, such as thermoelectrics and nanoelectronics. In theoretical studies, electron Monte Carlo simulations are widely used as an alternative approach to solving the electron Boltzmann transport equation, where the energy-dependent electron scattering, exact structure shape, and detailed electric field distribution can be fully incorporated. In this work, such electron Monte Carlo simulations are employed to predict the electrical conductivity of periodic nanoporous Si films that have been widely studied for thermoelectric applications. The focus is on the influence of pore-edge charges on the electron transport. The results are further compared to our previous modeling [Hao et al., J. Appl. Phys. 121, 094308 (2017)], where the pore-edge electric field has its own scattering rate to be added to the scattering rates of other mechanisms

    Topological superconducting states in monolayer FeSe/SrTiO3_{3}

    Get PDF
    The monolayer FeSe with a thickness of one unit cell grown on a single-crystal SrTiO3_{3} substrate (FeSe/STO) exhibits striking high-temperature superconductivity with transition temperature TcT_{c} over 65K reported by recent experimental measurements. In this work, through analyzing the distinctive electronic structure, and providing systematic classification of the pairing symmetry , we find that both ss-and pp-wave pairing with odd parity give rise to topological superconducting states in monolayer FeSe, and the exotic properties of ss-wave topological superconducting states have close relations with the unique non-symmorphic lattice structure which induces the orbital-momentum locking. Our results indicate that the monolayer FeSe could be in the topological nontrivial ss-wave superconducting states if the relevant effective pairing interactions are dominant in comparison with other candidates.Comment: 11 pages, 4 figure

    Topological crystalline antiferromagnetic state in tetragonal FeS

    Get PDF
    Integration between magnetism and topology is an exotic phenomenon in condensed-matter physics. Here, we propose an exotic phase named topological crystalline antiferromagnetic state, in which antiferromagnetism intrinsically integrates with nontrivial topology, and we suggest such a state can be realized in tetragonal FeS. A combination of first-principles calculations and symmetry analyses shows that the topological crystalline antiferromagnetic state arises from band reconstruction induced by pair checker-board antiferromagnetic order together with band-gap opening induced by intrinsic spin-orbit coupling in tetragonal FeS. The topological crystalline antiferromagnetic state is protected by the product of fractional translation symmetry, mirror symmetry, and time-reversal symmetry, and present some unique features. In contrast to strong topological insulators, the topological robustness is surface-dependent. These findings indicate that non-trivial topological states could emerge in pure antiferromagnetic materials, which sheds new light on potential applications of topological properties in fast-developing antiferromagnetic spintronics.Comment: 8 pages, 6 figure

    The Top Quark Production Asymmetries AFBtA_{FB}^t and AFBβ„“A_{FB}^{\ell}

    Full text link
    A large forward-backward asymmetry is seen in both the top quark rapidity distribution AFBtA_{FB}^t and in the rapidity distribution of charged leptons AFBβ„“A_{FB}^\ell from top quarks produced at the Tevatron. We study the kinematic and dynamic aspects of the relationship of the two observables arising from the spin correlation between the charged lepton and the top quark with different polarization states. We emphasize the value of both measurements, and we conclude that a new physics model which produces more right-handed than left-handed top quarks is favored by the present data.Comment: accepted for publication in Physical Review Letter

    A General Analysis of Wtb anomalous Couplings

    Full text link
    We investigate new physics effects on the Wtb effective couplings in a model-independent manner. The new physics effects are summarized as four independent couplings f1Lf_1^L, f1Rf_1^R, f2Lf_2^L and f2Rf_2^R. Using single-top-quark productions and W-helicity fraction measurements at the LHC and Tevatron, we perform a global fit to impose constraints on top quark effective couplings. We introduce a set of parameters x0x_0, xmx_m, xpx_p and x5x_5 to study the correlations among Wtb effective couplings. We show that (i) improving the measurements of Οƒt\sigma_t and ΟƒtW\sigma_{tW} is important in constraining the correlation of (f1R,f2R)(f_1^R,f_2^R) and (f2L,f2R)(f_2^L,f_2^R); (ii) f1Lf_1^L and f2Rf_2^R are anti-correlated, which is sensitive to all the experiments; (iii) f1Rf_1^R and f2Lf_2^L are also anti-correlated, which is sensitive to the W-helicity measurements; (iv) the correlation between f2Lf_2^L and f2Rf_2^R is sensitive to the precision of Οƒt\sigma_t, ΟƒtW\sigma_{tW} and F0F_0 measurements. The effective Wtb couplings are studied in three kinds of new physics models: SU(2)1Γ—SU(2)2Γ—U(1)XSU(2)_1 \times SU(2)_2 \times U(1)_X models, vector-like quark models and Littlest Higgs model with and without T-parity. The Wtb couplings in the left-right model and the un-unified model are sensitive to the ratio of gauge couplings when the new heavy gauge boson's mass (MWβ€²M_{W'}) is less than several hundred GeV, but the constraint is loose if MWβ€²>1M_{W'}>1 TeV. The Wtb couplings in vector-like quark models and the Littlest Higgs models are sensitive to the mixing angles of new heavy particles and SM particles. We also include the constraints of the oblique T-parameter and Zbb couplings which impose much tighter constraints on the mixing angles. We show that the Wtb coupling constraints become relevant if the precision of single top production cross section measurements could be reduced to 1\% relative to the SM predictions in future.Comment: Chin. Phys. C in pres
    • …