829 research outputs found

    Discriminative models for multi-instance problems with tree-structure

    Full text link
    Modeling network traffic is gaining importance in order to counter modern threats of ever increasing sophistication. It is though surprisingly difficult and costly to construct reliable classifiers on top of telemetry data due to the variety and complexity of signals that no human can manage to interpret in full. Obtaining training data with sufficiently large and variable body of labels can thus be seen as prohibitive problem. The goal of this work is to detect infected computers by observing their HTTP(S) traffic collected from network sensors, which are typically proxy servers or network firewalls, while relying on only minimal human input in model training phase. We propose a discriminative model that makes decisions based on all computer's traffic observed during predefined time window (5 minutes in our case). The model is trained on collected traffic samples over equally sized time window per large number of computers, where the only labels needed are human verdicts about the computer as a whole (presumed infected vs. presumed clean). As part of training the model itself recognizes discriminative patterns in traffic targeted to individual servers and constructs the final high-level classifier on top of them. We show the classifier to perform with very high precision, while the learned traffic patterns can be interpreted as Indicators of Compromise. In the following we implement the discriminative model as a neural network with special structure reflecting two stacked multi-instance problems. The main advantages of the proposed configuration include not only improved accuracy and ability to learn from gross labels, but also automatic learning of server types (together with their detectors) which are typically visited by infected computers

    Efficient Defenses Against Adversarial Attacks

    Full text link
    Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of undermining a system. In the case of DNNs, the lack of better understanding of their working has prevented the development of efficient defenses. In this paper, we propose a new defense method based on practical observations which is easy to integrate into models and performs better than state-of-the-art defenses. Our proposed solution is meant to reinforce the structure of a DNN, making its prediction more stable and less likely to be fooled by adversarial samples. We conduct an extensive experimental study proving the efficiency of our method against multiple attacks, comparing it to numerous defenses, both in white-box and black-box setups. Additionally, the implementation of our method brings almost no overhead to the training procedure, while maintaining the prediction performance of the original model on clean samples.Comment: 16 page

    Deep Character-Level Click-Through Rate Prediction for Sponsored Search

    Full text link
    Predicting the click-through rate of an advertisement is a critical component of online advertising platforms. In sponsored search, the click-through rate estimates the probability that a displayed advertisement is clicked by a user after she submits a query to the search engine. Commercial search engines typically rely on machine learning models trained with a large number of features to make such predictions. This is inevitably requires a lot of engineering efforts to define, compute, and select the appropriate features. In this paper, we propose two novel approaches (one working at character level and the other working at word level) that use deep convolutional neural networks to predict the click-through rate of a query-advertisement pair. Specially, the proposed architectures only consider the textual content appearing in a query-advertisement pair as input, and produce as output a click-through rate prediction. By comparing the character-level model with the word-level model, we show that language representation can be learnt from scratch at character level when trained on enough data. Through extensive experiments using billions of query-advertisement pairs of a popular commercial search engine, we demonstrate that both approaches significantly outperform a baseline model built on well-selected text features and a state-of-the-art word2vec-based approach. Finally, by combining the predictions of the deep models introduced in this study with the prediction of the model in production of the same commercial search engine, we significantly improve the accuracy and the calibration of the click-through rate prediction of the production system.Comment: SIGIR2017, 10 page

    Single Shot Temporal Action Detection

    Full text link
    Temporal action detection is a very important yet challenging problem, since videos in real applications are usually long, untrimmed and contain multiple action instances. This problem requires not only recognizing action categories but also detecting start time and end time of each action instance. Many state-of-the-art methods adopt the "detection by classification" framework: first do proposal, and then classify proposals. The main drawback of this framework is that the boundaries of action instance proposals have been fixed during the classification step. To address this issue, we propose a novel Single Shot Action Detector (SSAD) network based on 1D temporal convolutional layers to skip the proposal generation step via directly detecting action instances in untrimmed video. On pursuit of designing a particular SSAD network that can work effectively for temporal action detection, we empirically search for the best network architecture of SSAD due to lacking existing models that can be directly adopted. Moreover, we investigate into input feature types and fusion strategies to further improve detection accuracy. We conduct extensive experiments on two challenging datasets: THUMOS 2014 and MEXaction2. When setting Intersection-over-Union threshold to 0.5 during evaluation, SSAD significantly outperforms other state-of-the-art systems by increasing mAP from 19.0% to 24.6% on THUMOS 2014 and from 7.4% to 11.0% on MEXaction2.Comment: ACM Multimedia 201

    Identifying Clickbait: A Multi-Strategy Approach Using Neural Networks

    Full text link
    Online media outlets, in a bid to expand their reach and subsequently increase revenue through ad monetisation, have begun adopting clickbait techniques to lure readers to click on articles. The article fails to fulfill the promise made by the headline. Traditional methods for clickbait detection have relied heavily on feature engineering which, in turn, is dependent on the dataset it is built for. The application of neural networks for this task has only been explored partially. We propose a novel approach considering all information found in a social media post. We train a bidirectional LSTM with an attention mechanism to learn the extent to which a word contributes to the post's clickbait score in a differential manner. We also employ a Siamese net to capture the similarity between source and target information. Information gleaned from images has not been considered in previous approaches. We learn image embeddings from large amounts of data using Convolutional Neural Networks to add another layer of complexity to our model. Finally, we concatenate the outputs from the three separate components, serving it as input to a fully connected layer. We conduct experiments over a test corpus of 19538 social media posts, attaining an F1 score of 65.37% on the dataset bettering the previous state-of-the-art, as well as other proposed approaches, feature engineering or otherwise.Comment: Accepted at SIGIR 2018 as Short Pape

    Optimal input configuration of dynamic contrast enhanced MRI in convolutional neural networks for liver segmentation

    Full text link
    Most MRI liver segmentation methods use a structural 3D scan as input, such as a T1 or T2 weighted scan. Segmentation performance may be improved by utilizing both structural and functional information, as contained in dynamic contrast enhanced (DCE) MR series. Dynamic information can be incorporated in a segmentation method based on convolutional neural networks in a number of ways. In this study, the optimal input configuration of DCE MR images for convolutional neural networks (CNNs) is studied. The performance of three different input configurations for CNNs is studied for a liver segmentation task. The three configurations are I) one phase image of the DCE-MR series as input image; II) the separate phases of the DCE-MR as input images; and III) the separate phases of the DCE-MR as channels of one input image. The three input configurations are fed into a dilated fully convolutional network and into a small U-net. The CNNs were trained using 19 annotated DCE-MR series and tested on another 19 annotated DCE-MR series. The performance of the three input configurations for both networks is evaluated against manual annotations. The results show that both neural networks perform better when the separate phases of the DCE-MR series are used as channels of an input image in comparison to one phase as input image or the separate phases as input images. No significant difference between the performances of the two network architectures was found for the separate phases as channels of an input image.Comment: Submitted to SPIE Medical Imaging 201

    Yeah, Right, Uh-Huh: A Deep Learning Backchannel Predictor

    Full text link
    Using supporting backchannel (BC) cues can make human-computer interaction more social. BCs provide a feedback from the listener to the speaker indicating to the speaker that he is still listened to. BCs can be expressed in different ways, depending on the modality of the interaction, for example as gestures or acoustic cues. In this work, we only considered acoustic cues. We are proposing an approach towards detecting BC opportunities based on acoustic input features like power and pitch. While other works in the field rely on the use of a hand-written rule set or specialized features, we made use of artificial neural networks. They are capable of deriving higher order features from input features themselves. In our setup, we first used a fully connected feed-forward network to establish an updated baseline in comparison to our previously proposed setup. We also extended this setup by the use of Long Short-Term Memory (LSTM) networks which have shown to outperform feed-forward based setups on various tasks. Our best system achieved an F1-Score of 0.37 using power and pitch features. Adding linguistic information using word2vec, the score increased to 0.39
    • ÔÇŽ