403 research outputs found
Generalized canonical ensembles and ensemble equivalence
This paper is a companion article to our previous paper (J. Stat. Phys. 119,
1283 (2005), cond-mat/0408681), which introduced a generalized canonical
ensemble obtained by multiplying the usual Boltzmann weight factor of the canonical ensemble with an exponential factor involving a continuous
function of the Hamiltonian . We provide here a simplified introduction
to our previous work, focusing now on a number of physical rather than
mathematical aspects of the generalized canonical ensemble. The main result
discussed is that, for suitable choices of , the generalized canonical
ensemble reproduces, in the thermodynamic limit, all the microcanonical
equilibrium properties of the many-body system represented by even if this
system has a nonconcave microcanonical entropy function. This is something that
in general the standard () canonical ensemble cannot achieve. Thus a
virtue of the generalized canonical ensemble is that it can be made equivalent
to the microcanonical ensemble in cases where the canonical ensemble cannot.
The case of quadratic -functions is discussed in detail; it leads to the
so-called Gaussian ensemble.Comment: 8 pages, 4 figures (best viewed in ps), revtex4. Changes in v2: Title
changed, references updated, new paragraph added, minor differences with
published versio
Bulk Elastic Moduli and Solute Potentials in Leaves of Freshwater, Coastal, and Marine Hydrophytes. Are Marine Plants More Rigid?
Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the ‘cell water conservation hypothesis’, may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant–water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below −1.0 MPa and the majority of freshwater plants were above −1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis
Fluctuation relation for a L\'evy particle
We study the work fluctuations of a particle subjected to a deterministic
drag force plus a random forcing whose statistics is of the L\'evy type. In the
stationary regime, the probability density of the work is found to have ``fat''
power-law tails which assign a relatively high probability to large
fluctuations compared with the case where the random forcing is Gaussian. These
tails lead to a strong violation of existing fluctuation theorems, as the ratio
of the probabilities of positive and negative work fluctuations of equal
magnitude behaves in a non-monotonic way. Possible experiments that could probe
these features are proposed.Comment: 5 pages, 2 figures, RevTeX4; v2: minor corrections and references
added; v3: typos corrected, new conclusion, close to published versio
Brownian motion with dry friction: Fokker-Planck approach
We solve a Langevin equation, first studied by de Gennes, in which there is a
solid-solid or dry friction force acting on a Brownian particle in addition to
the viscous friction usually considered in the study of Brownian motion. We
obtain both the time-dependent propagator of this equation and the velocity
correlation function by solving the associated time-dependent Fokker-Planck
equation. Exact results are found for the case where only dry friction acts on
the particle. For the case where both dry and viscous friction forces are
present, series representations of the propagator and correlation function are
obtained in terms of parabolic cylinder functions. Similar series
representations are also obtained for the case where an external constant force
is added to the Langevin equation.Comment: 18 pages, 13 figures (in color
Path integral approach to random motion with nonlinear friction
Using a path integral approach, we derive an analytical solution of a
nonlinear and singular Langevin equation, which has been introduced previously
by P.-G. de Gennes as a simple phenomenological model for the stick-slip motion
of a solid object on a vibrating horizontal surface. We show that the optimal
(or most probable) paths of this model can be divided into two classes of
paths, which correspond physically to a sliding or slip motion, where the
object moves with a non-zero velocity over the underlying surface, and a
stick-slip motion, where the object is stuck to the surface for a finite time.
These two kinds of basic motions underlie the behavior of many more complicated
systems with solid/solid friction and appear naturally in de Gennes' model in
the path integral framework.Comment: 18 pages, 3 figure
Superstatistics, thermodynamics, and fluctuations
A thermodynamic-like formalism is developed for superstatistical systems
based on conditional entropies. This theory takes into account large-scale
variations of intensive variables of systems in nonequilibrium stationary
states. Ordinary thermodynamics is recovered as a special case of the present
theory, and corrections to it can be systematically evaluated. A generalization
of Einstein's relation for fluctuations is presented using a maximum entropy
condition.Comment: 16 pages, no figures. The title changed, some explanations and
references added. Accepted for publication in Phys. Rev.
Stick-slip motion of solids with dry friction subject to random vibrations and an external field
We investigate a model for the dynamics of a solid object, which moves over a
randomly vibrating solid surface and is subject to a constant external force.
The dry friction between the two solids is modeled phenomenologically as being
proportional to the sign of the object's velocity relative to the surface, and
therefore shows a discontinuity at zero velocity. Using a path integral
approach, we derive analytical expressions for the transition probability of
the object's velocity and the stationary distribution of the work done on the
object due to the external force. From the latter distribution, we also derive
a fluctuation relation for the mechanical work fluctuations, which incorporates
the effect of the dry friction.Comment: v1: 23 pages, 9 figures; v2: Reference list corrected; v3: Published
version, typos corrected, references adde
Chaotic Observer-based Synchronization Under Information Constraints
Limit possibilities of observer-based synchronization systems under
information constraints (limited information capacity of the coupling channel)
are evaluated. We give theoretical analysis for multi-dimensional
drive-response systems represented in the Lurie form (linear part plus
nonlinearity depending only on measurable outputs). It is shown that the upper
bound of the limit synchronization error (LSE) is proportional to the upper
bound of the transmission error. As a consequence, the upper and lower bounds
of LSE are proportional to the maximum rate of the coupling signal and
inversely proportional to the information transmission rate (channel capacity).
Optimality of the binary coding for coders with one-step memory is established.
The results are applied to synchronization of two chaotic Chua systems coupled
via a channel with limited capacity.Comment: 7 pages, 6 figures, 27 reference
Early risk factors of overweight developmental trajectories during middle childhood
Background
Research is needed to identify early life risk factors associated with different developmental
paths leading to overweight by adolescence.
Objectives
To model heterogeneity in overweight development during middle childhood and identify
factors associated with differing overweight trajectories.
Methods
Data was drawn from the Quebec Longitudinal Study of Child Development (QLSCD; 1998-
2010). Trained research assistants measured height and weight according to a standardized
protocol and conducted yearly home interviews with the child’s caregiver (mother in
98% of cases). Information on several putative early life risk factors for the development of
overweight were obtained, including factors related to the child’s perinatal, early behavioral
family and social environment. Group-based trajectories of the probability of overweight (6-
12 years) were identified with a semiparametric method (n=1678). Logistic regression analyses were used to identify early risk factors (5 months- 5 years) associated with each
trajectory.
Results
Three trajectories of overweight were identified: “early-onset overweight” (11.0 %), “lateonset
overweight” (16.6%) and “never overweight” (72.5%). Multinomial analyses indicated
that children in the early and late-onset group, compared to the never overweight group,
had 3 common types of risk factors: parental overweight, preschool overweight history, and
large size for gestational age. Maternal overprotection (OR= 1.12, CI: 1.01-1.25), short
nighttime sleep duration (OR=1.66, CI: 1.07-2.57), and immigrant status (OR=2.01, CI:
1.05-3.84) were factors specific to the early-onset group. Finally, family food insufficiency
(OR=1.81, CI: 1.00-3.28) was weakly associated with membership in the late-onset trajectory
group.
Conclusions
The development of overweight in childhood follows two different trajectories, which have
common and distinct risk factors that could be the target of early preventive interventions
- …