810 research outputs found

    The Formation of the Milky Way in the Cosmological Context

    Get PDF
    The formation of the Milky Way is discussed within the context of the cold dark matter scenario. Several problems arise which can be solved if the Galaxy experienced an early phase of gas heating and decoupling from the dark matter substructure. This model combines the Eggen, Lynden-Bell and Sandage picture of a monolithic protogalactic collapses with the Searle and Zinn picture of an early merging phase of substructures into one consistent scenario of Galactic formation.Comment: 5 pages, conference proceeding. to appear in "Cosmic Evolution", eds. M. Lemoine and E. Vangioni-Fla

    The geometry and origin of ultra-diffuse ghost galaxies

    Full text link
    The geometry and intrinsic ellipticity distribution of ultra diffuse galaxies (UDGs) is determined from the line-of-sight distribution of axial ratios q of a large sample of UDGs, detected by Koda et al. (2015) in the Coma cluster. With high significance the data rules out an oblate, disk-like geometry, characterised by major axi a=b>c. The data is however in good agreement with prolate shapes, corresponding to a=b<c. This indicates that UDGs are not thickened, rotating, axisymmetric disks, puffed up by violent processes. Instead they are anisotropic elongated cigar- or bar-like structures, similar to the prolate dwarf spheroidal galaxy population of the Local Group. The intrinsic distribution of axial ratios of the Coma UDGs is flat in the range of 0.4 <= a/c <= 0.9 which will provide important constraints for theoretical models of their origin. Formation scenarios that could explain the extended prolate nature of UDGs are discussed.Comment: 13 pages, 4 figures, ApJ, in pres

    The Challenge of Modelling Galactic Disks

    Full text link
    Detailed models of galactic disk formation and evolution require knowledge about the initial conditions under which disk galaxies form, the boundary conditions that affect their secular evolution and the micro-physical processes that drive the multi-phase interstellar medium and regulate the star formation history. Unfortunately, up to now, most of these ingredients are still poorly understood. The challenge therefore is to, despite this caveat, construct realistic models of galactic disks with predictive power. This short review will summarize some problems related to numerical simulations of galactic disk formation and evolution.Comment: 7 pages, 2 figures, invited contribution: IAU Symposium 254 on "The Galaxy Disk in Cosmological Context

    Major Mergers and the Origin of Elliptical Galaxies

    Get PDF
    The formation of elliptical galaxies as a result of the merging of spiral galaxies is discussed. We analyse a large set of numerical N-Body merger simulations which show that major mergers can in principle explain the observed isophotal fine structure of ellipticals and its correlation with kinematical properties. Equal-mass mergers lead to boxy, slowly rotating systems, unequal-mass mergers produce fast rotating and disky ellipticals. However, several problems remain. Anisotropic equal mass mergers appear disky under certain projections which is not observed. The intrinsic ellipticities of remnants are often larger than observed. Finally, although unequal-mass mergers produce fast rotating ellipticals, the remnants are in general more anisotropic than expected from observations. Additional processes seem to play an important role which are not included in dissipationless mergers. Resolving these problems might provide interesting new information on the structure and gas content of the progenitors of early-type galaxies.Comment: 13 pages, 5 figures, research review, to appear in "Galaxies and Chaos", eds. G. Contopoulos and N. Voglis (Springer

    The formation of filamentary bundles in turbulent molecular clouds

    Full text link
    The classical picture of a star-forming filament is a near-equilibrium structure, with collapse dependent on its gravitational criticality. Recent observations have complicated this picture, revealing filaments as a mess of apparently interacting subfilaments, with transsonic internal velocity dispersions and mildly supersonic intra-subfilament dispersions. How structures like this form is unresolved. Here we study the velocity structure of filamentary regions in a simulation of a turbulent molecular cloud. We present two main findings: first, the observed complex velocity features in filaments arise naturally in self gravitating hydrodynamic simulations of turbulent clouds without the need for magnetic or other effects. Second, a region that is filamentary only in projection and is in fact made of spatially distinct features can displays these same velocity characteristics. The fact that these disjoint structures can masquerade as coherent filaments in both projection and velocity diagnostics highlights the need to continue developing sophisticated filamentary analysis techniques for star formation observations.Comment: Undergoing revision for ApJ; comments are welcome. A very similar set of data to the one presented here can be interacted with at http://nickolas1.com/filamentvelocities
    corecore