11 research outputs found
Test techniques for obtaining off-nominal compressor data during engine tests
Several unique techniques and related devices are described which are in use at the Lewis Research Center for off-design testing of fan and compressor sections in full-scale jet engines. The devices presented permit a wide range of experimental conditions and minimize downtime for hardware changes. The techniques involve use of such devices as inlet pressure distortion jets, a hydrogen burner for inlet temperature distortions, fan back pressure jets to simulate a variable area nozzle, and either an inflow-outflow bleed system or a fuel spurt system to alter compressor discharge pressure
Altitude calibration of an F100, S/N P680063, turbofan engine
An airflow and thrust calibration of an F100 engine was conducted in coordination with a flight test program to study airframe-propulsion system integration characteristics of turbofan-powered high-performance aircraft. The tests were conducted with and without augmentation for a variety of simulated flight conditions with emphasis on the transonic regime. Test results for all conditions are presented in terms of corrected airflow and corrected gross thrust as functions of corrected fan speed for nonaugmented power and an augmented thrust ratio as a function of fuel-air ratio for augmented power. Comparisons of measured and predicted data are presented along with the results of an uncertainty analysis for both corrected airflow and gross thrust
Response of a small-turboshaft-engine compression system to inlet temperature distortion
An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator
Altitude performance of a low-noise-technology fan in a turbofan engine with and without a sound suppressing nacelle
Test variables were inlet Reynolds number index (0.2 to 0.5), flight Mach number (0.2 to 0.8), and flow distortion (tip radial and combined circumferential - tip radial patterns). Results are limited to fan bypass and overall engine performance. There were no discernible effects of Reynolds number on fan performance. Increasing flight Mach number shifted the fan operating line such that pressure ratio decreased and airflow increased. Inlet flow distortion lowered stall margin. For a Reynolds number index of 0.2 and flight Mach number of 0.54, the sound suppressing nacelle lowered fan efficiency three points and increased specific fuel consumption about 10 percent
Summary of investigations of engine response to distorted inlet conditions
A survey is presented of experimental and analytical experience of the NASA Lewis Research Center in engine response to inlet temperature and pressure distortions. This includes a description of the hardware and techniques employed, and a summary of the highlights of experimental investigations and analytical modeling. Distortion devices successfully simulated inlet distortion, and knowledge was gained about compression system response to different types of distortion. A list of NASA research references is included
Experimental study of ceramic coated tip seals for turbojet engines
Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond boat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface
Nuclear rocket simulator tests, flow initiation with no turbine gas tank pressure, 35 PSIA Run 1
Nuclear reactor simulator test - liquid hydrogen run, instrumentation and data acquisition system operational procedure checkou
Experimental and analytical study of ceramic-coated turbine-tip shroud seals for small turbine engines
The results of an experimental and analytical evaluation of ceramic turbine tip shrouds within a small turbine engine operating environment are presented. The ceramic shrouds were subjected to 1001 cycles between idle and high power and steady-state conditions for a total of 57.8 engine hr. Posttest engine inspection revealed mud-flat surface cracking, which was attributed to microcracking under tension with crack penetration to the ceramic and bond coat interface. Sections and micrographs tend to corroborate the thesis. The engine test data provided input to a thermomechanical analysis to predict temperature and stress profiles throughout the ceramic gas-path seal. The analysis predicts cyclic thermal stresses large enough to cause the seal to fail. These stresses are, however, mitigated by inelastic behavior of the shroud materials and by the microfracturing that tensile stresses produce. Microfracturing enhances shroud longevity during early life but provides the failure mechanism during life but provides the failure mechanism during extended life when coupled with the time dependent inelastic materials effects