116 research outputs found
Synthesis of 1,2,3-triazole functionalized hyperbranched poly(ethyleneimine) and its use as multifunctional anionic macroinitiator for diglycidyl ether of bisphenol A curing
Hyperbranched poly(ethyleneimine) (PEI) has been modified by the addition of propargyl acrylate following a Michael addition reaction. On this polymer (PEI-yne) a copper (I)-catalyzed azide alkyne cycloaddition (CuAAC) has been performed to obtain a multifunctional triazole initiator (PEI-TA). After structural and thermal characterization, this polymer has been used in different proportions as anionic multifunctional macroinitiator in diglycidyl ether of bisphenol A (DGEBA) homopolymerization. The curing process has been studied by calorimetry and the thermosets obtained have been thermally characterized and compared with thermosets prepared by using 1-methylimidazole (1-MI) as standard initiator. The electron microscopy inspection of the fracture surfaces of the new materials prepared shows the formation of submicrometer particles that should enhance toughness characteristics, changing smooth fracture surfaces in 1-MI initiated materials to multi-planar surface with tortuous and thicker cracks.Postprint (author's final draft
Dendrimere als vielseitige, nano-skalige Objekte für biomimetische, biomedizinische und katalytische Fragestellungen
With their three-dimensional macromolecular structure and shape, and with their tuneable properties in both the inner and outer spheres, dendrimers are ideal model compounds in the nanometre range between 1 and 10 nm. The possibility to combine different properties within one macromolecule destines them for use in various high-end research fields such as medicine, pharmacy, biology, supramolecular chemistry, nanotechnology and material sciences. On the basis of their high end-group density and a compact, highly branched molecular structure, dendrimers are successfully investigated as carrier systems for active substances and metal ions (e.g. contrast agents for the visualisation of blood vessels), as templates for metal nanoparticles, as artificial enzymes with defined functions, and as materials for catalysis.Dendrimere sind aufgrund ihrer dreidimensionalen Makromolekülstruktur und -form und ihrer steuerbaren Eigenschaften sowohl an der Oberfläche als auch im Molekülinneren ideale Modellverbindungen im Nanometerbereich – sie sind zwischen 1 und 10 nm groß –, die vorzugsweise in der Medizin, Pharmazie, Biologie, Supramolekularen Chemie, Nanotechnologie und den Materialwissenschaften eingesetzt werden. Aufgrund ihrer hohen Endgruppendichte und der kompakten, stark verzweigten Molekülform werden Dendrimere unter anderem als Trägermaterialien und Transportsysteme für Wirkstoffe und Metallionen, zum Beispiel als Kontrastmittel zur Visualisierung von Organen und Blutgefäßen, als Template für metallische Nanopartikel, zur Erzeugung künstlicher Enzymfunktionen und in der Katalyse erfolgreich untersucht
Photo-Cross-Linked Dual-Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post-Encapsulation and Release
Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio-inspired functions. For this purpose pH and temperature dual-responsive and photo-cross-linked hollow capsules, based on silica-templated layer-by-layer approach by using poly(N-isopropyl acrylamide)-blockpolymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post-encapsulation process of proteinlike macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate-containing buffer solution (5.5 or 7.4), by the degree of photo-cross-linking, and the size of cargo. The photo-cross-linked and dual stimuli-responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules
Recommended from our members
Long-Term Retarded Release for the Proteasome Inhibitor Bortezomib through Temperature-Sensitive Dendritic Glycopolymers as Drug Delivery System from Calcium Phosphate Bone Cement
For the local treatment of bone defects, highly adaptable macromolecular architectures are still required as drug delivery system (DDS) in solid bone substitute materials. Novel DDS fabricated by host–guest interactions between β-cyclodextrin-modified dendritic glycopolymers and adamantane-modified temperature-sensitive polymers for the proteasome inhibitor bortezomib (BZM) is presented. These DDS induce a short- and long-term (up to two weeks) retarded release of BZM from calcium phosphate bone cement (CPC) in comparison to a burst release of the drug alone. Different release parameters of BZM/DDS/CPC are evaluated in phosphate buffer at 37 °C to further improve the long-term retarded release of BZM. This is achieved by increasing the amount of drug (50–100 µg) and/or DDS (100–400 µg) versus CPC (1 g), by adapting the complexes better to the porous bone cement environment, and by applying molar ratios of excess BZM toward DDS with 1:10, 1:25, and 1:100. The temperature-sensitive polymer shells of BZM/DDS complexes in CPC, which allow drug loading at room temperature but are collapsed at body temperature, support the retarding long-term release of BZM from DDS/CPC. Thus, the concept of temperature-sensitive DDS for BZM/DDS complexes in CPC works and matches key points for a local therapy of osteolytic bone lesions
Recommended from our members
Novel Application of Polymer Networks Carrying Tertiary Amines as a Catalyst Inside Microflow Reactors Used for Knoevenagel Reactions
A novel application is described for utilizing hydrogel dots as organocatalyst carriers inside microfluidic reactors. Tertiary amines were covalently immobilized in the hydrogel dots. Due to the diffusion of reactants within the swollen hydrogel dots, the accessible amount of catalysts inside a microfluidic reactor chamber can be increased compared to the accessible amount of surface-bound catalysts. To perform fast Knoevenagel reactions, important flow parameters had to be validated to optimize the reactor performance while keeping the dimensions of the reactor chamber constant; e.g. the height of the hydrogel dots had to be adjusted to the invariable dimensions of the reactor chamber, or an adjustment of organocatalysts in the hydrogel dots had to be validated to achieve the highest conversion rate during a certain residence time. To characterize the conversion, nuclear magnetic resonance (NMR) and UV/Vis-spectroscopy were utilized as an offline and online method, respectively. With suitable hydrogel dots, the influence of different flow parameters (e.g., operating flow rate and reactant concentration) on the selected model reactions in the microfluidic reactor was investigated. Finally, a variety of reactants were screened with the optimized flow parameters. With these results, the turnover frequency was determined for the Knoevenagel reactions in a microfluidic reactor, and the results were compared with published data that were determined by other synthetic approaches. © 2020 The Authors published by Wiley-VCH Gmb
Recommended from our members
Continuous Flow Synthesis of Azoxybenzenes by Reductive Dimerization of Nitrosobenzenes with Gel‐Bound Catalysts
In the search for a new synthetic pathway for azoxybenzenes with different substitution patterns, an approach using a microfluidic reactor with gel-bound proline organocatalysts under continuous flow is presented. Herein the formation of differently substituted azoxybezenes by reductive dimerization of nitrosobenzenes within minutes at mild conditions in good to almost quantitative yields is described. The conversion within the microfluidic reactor is analyzed and used for optimizing and validating different parameters. The effects of the different functionalities on conversion, yield, and reaction times are analyzed in detail by NMR. The applicability of this reductive dimerization is demonstrated for a wide range of differently substituted nitrosobenzenes. The effects of these different functionalities on the structure of the obtained azoxyarenes are analyzed in detail by NMR and single-crystal X-ray diffraction. Based on these results, the turnover number and the turnover frequency were determined
Recommended from our members
Targeted delivery of TLR3 agonist to tumor cells with single chain antibody fragment-conjugated nanoparticles induces type I-interferon response and apoptosis
Application of Toll-like receptor (TLR) agonists is a promising approach to treat cancer. In particular, nucleic acid-based TLR agonists such as short ssRNA and dsRNA molecules, which activate endosomal TLRs, can be delivered to tumors by use of nanoparticle delivery systems. However, such delivery systems bear unspecific side effects and poor pharmacokinetics. To overcome these limitations we developed a system for targeted delivery of a 50 bp dsRNA TLR3 agonist (Riboxxol) to treat PSCA-positive tumor cells, which consists of neutravidin conjugated to mono-biotinylated dsRNA and to humanized mono-biotinylated anti-PSCA single chain antibody derivative scFv(h-AM1)-BAP. The assembly of the components resulted in the formation of nanoparticle-like immunoconjugates designated Rapid Inducer of Cellular Inflammation and Apoptosis (RICIA). Anti-PSCA-RICIA exclusively delivered Riboxxol to PSCA-positive tumor cells as well as subcutaneous tumors. Uptake of anti-PSCA-RICIA induced a type I-interferon response and apoptosis in HEK-Blue hTLR3/PSCA reporter cells and PSCA-positive HT1376 bladder cancer cells in vitro. No such effects were observed when using RICIA coupled to an unspecific control antibody or when using Riboxxol alone. Treatment of HT1376 xenografts in immune-deficient hosts with targeted delivery of TLR3 agonist did not induce adverse effects and only modestly inhibited tumor growth when compared to controls. These results suggest promising activation of innate immune response and apoptosis upon selective delivery of TLR3 agonists in tumor cells. Yet, further studies using syngeneic and orthotopic tumor models are needed to fully exploit the potential of RICIA immunoconjugates. © 2019, The Author(s)
Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines
New therapeutic strategies for personalized medicine need to involve innovative pharmaceutical tools, for example, modular nanoparticles designed for direct immunomodulatory properties. We synthesized mannose-functionalized poly(propyleneimine) glycodendrimers with a novel architecture, where freely accessible mannose moieties are presented on poly(ethylene glycol)-based linkers embedded within an open-shell maltose coating. This design enhanced glycodendrimer bioactivity and led to complex functional effects in myeloid cells, with specific induction of interleukin-8 expression by mannose glycodendrimers detected in HL-60 and THP-1 cells. We concentrated on explaining the molecular mechanism of this phenomenon, which turned out to be different in both investigated cell lines: in HL-60 cells, transcriptional activation via AP-1 binding to the promoter predominated, while in THP-1 cells (which initially expressed less IL-8), induction was mediated mainly by mRNA stabilization. The success of directed immunomodulation, with synthetic design guided by assumptions about mannose-modified dendrimers as exogenous regulators of pro-inflammatory chemokine levels, opens new possibilities for designing bioactive nanoparticles. © 2021 The Authors. Published by American Chemical Society
Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line
Purpose: Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods: To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results: We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion: We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines)
- …