232 research outputs found

    Using a Power Law Distribution to describe Big Data

    Full text link
    The gap between data production and user ability to access, compute and produce meaningful results calls for tools that address the challenges associated with big data volume, velocity and variety. One of the key hurdles is the inability to methodically remove expected or uninteresting elements from large data sets. This difficulty often wastes valuable researcher and computational time by expending resources on uninteresting parts of data. Social sensors, or sensors which produce data based on human activity, such as Wikipedia, Twitter, and Facebook have an underlying structure which can be thought of as having a Power Law distribution. Such a distribution implies that few nodes generate large amounts of data. In this article, we propose a technique to take an arbitrary dataset and compute a power law distributed background model that bases its parameters on observed statistics. This model can be used to determine the suitability of using a power law or automatically identify high degree nodes for filtering and can be scaled to work with big data.Comment: 5 page

    Big Data Dimensional Analysis

    Full text link
    The ability to collect and analyze large amounts of data is a growing problem within the scientific community. The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. One of the main challenges associated with big data variety is automatically understanding the underlying structures and patterns of the data. Such an understanding is required as a pre-requisite to the application of advanced analytics to the data. Further, big data sets often contain anomalies and errors that are difficult to know a priori. Current approaches to understanding data structure are drawn from the traditional database ontology design. These approaches are effective, but often require too much human involvement to be effective for the volume, velocity and variety of data encountered by big data systems. Dimensional Data Analysis (DDA) is a proposed technique that allows big data analysts to quickly understand the overall structure of a big dataset, determine anomalies. DDA exploits structures that exist in a wide class of data to quickly determine the nature of the data and its statical anomalies. DDA leverages existing schemas that are employed in big data databases today. This paper presents DDA, applies it to a number of data sets, and measures its performance. The overhead of DDA is low and can be applied to existing big data systems without greatly impacting their computing requirements.Comment: From IEEE HPEC 201

    RadiX-Net: Structured Sparse Matrices for Deep Neural Networks

    Full text link
    The sizes of deep neural networks (DNNs) are rapidly outgrowing the capacity of hardware to store and train them. Research over the past few decades has explored the prospect of sparsifying DNNs before, during, and after training by pruning edges from the underlying topology. The resulting neural network is known as a sparse neural network. More recent work has demonstrated the remarkable result that certain sparse DNNs can train to the same precision as dense DNNs at lower runtime and storage cost. An intriguing class of these sparse DNNs is the X-Nets, which are initialized and trained upon a sparse topology with neither reference to a parent dense DNN nor subsequent pruning. We present an algorithm that deterministically generates RadiX-Nets: sparse DNN topologies that, as a whole, are much more diverse than X-Net topologies, while preserving X-Nets' desired characteristics. We further present a functional-analytic conjecture based on the longstanding observation that sparse neural network topologies can attain the same expressive power as dense counterpartsComment: 7 pages, 8 figures, accepted at IEEE IPDPS 2019 GrAPL workshop. arXiv admin note: substantial text overlap with arXiv:1809.0524

    Linear Systems over Join-Blank Algebras

    Get PDF
    A central problem of linear algebra is solving linear systems. Regarding linear systems as equations over general semirings (V,otimes,oplus,0,1) instead of rings or fields makes traditional approaches impossible. Earlier work shows that the solution space X(A;w) of the linear system Av = w over the class of semirings called join-blank algebras is a union of closed intervals (in the product order) with a common terminal point. In the smaller class of max-blank algebras, the additional hypothesis that the solution spaces of the 1x1 systems Av = w are closed intervals implies that X(A;w) is a finite union of closed intervals. We examine the general case, proving that without this additional hypothesis, we can still make X(A;w) into a finite union of quasi-intervals

    Percolation Model of Insider Threats to Assess the Optimum Number of Rules

    Full text link
    Rules, regulations, and policies are the basis of civilized society and are used to coordinate the activities of individuals who have a variety of goals and purposes. History has taught that over-regulation (too many rules) makes it difficult to compete and under-regulation (too few rules) can lead to crisis. This implies an optimal number of rules that avoids these two extremes. Rules create boundaries that define the latitude an individual has to perform their activities. This paper creates a Toy Model of a work environment and examines it with respect to the latitude provided to a normal individual and the latitude provided to an insider threat. Simulations with the Toy Model illustrate four regimes with respect to an insider threat: under-regulated, possibly optimal, tipping-point, and over-regulated. These regimes depend up the number of rules (N) and the minimum latitude (Lmin) required by a normal individual to carry out their activities. The Toy Model is then mapped onto the standard 1D Percolation Model from theoretical physics and the same behavior is observed. This allows the Toy Model to be generalized to a wide array of more complex models that have been well studied by the theoretical physics community and also show the same behavior. Finally, by estimating N and Lmin it should be possible to determine the regime of any particular environment.Comment: 6 pages, 5 figures, submitted to IEEE HS
    corecore