386,433 research outputs found

    Apoptotic epitope-specific CD8+ T cells and interferon signaling intersect in chronic hepatitis C virus infection

    Get PDF
    CD8(+) T cells specific to caspase-cleaved antigens derived from apoptotic T cells represent a principal player in chronic immune activation (CIA). Here, we found that both apoptotic epitope (AE)-specific and hepatitis C virus (HCV)-specific CD8(+) T cells were mostly confined within the effector memory (EM) or terminally differentiated EM CD45RA(+) cell subsets expressing a dysfunctional T-helper-1-like signature program in chronic (c)HCV infection. However, AE-specific CD8(+) T cells produced tumor necrosis factor (TNF)-α and interleukin-2 at the intrahepatic level significantly more than HCV-specific CD8(+) T cells, despite both populations acquiring high levels of programmed death-1 receptor expression. Contextually, only AE-specific CD8(+) T cells correlated with both interferon-stimulated gene levels in T cells and hepatic fibrosis score. Taken together, these data suggest that AE-specific CD8(+) T cells can sustain CIA by their capacity to produce TNF-α and be resistant to inhibitory signals more than HCV-specific CD8(+) T cells in cHCV infection

    Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    Get PDF
    Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases

    CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells

    Get PDF
    The persistence of HIV reservoirs, including latently infected, resting CD4+ T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4+ T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4+ T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV+ or SIV+ subjects, we found that most of the circulating memory CD32+ CD4+ T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a TH2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4+ T cells in peripheral blood or lymphoid tissue; isolated CD32+ resting CD4+ T cells accounted for less than 3% of the total HIV DNA in CD4+ T cells. Cell-associated HIV DNA and RNA loads in CD4+ T cells positively correlated with the frequency of CD32+ CD69+ CD4+ T cells but not with CD32 expression on resting CD4+ T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4+ T cells or of enriched HIV DNA–positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4+ T cells enriched for transcriptionally active HIV after long-term ART

    Differential Responses of Human Regulatory T Cells (Treg) and Effector T Cells to Rapamycin

    Get PDF
    Background: The immunosuppressive drug rapamycin (RAPA) promotes the expansion of CD4+ CD25highFoxp3+ regulatory\ud T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-c chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA.\ud Methodology/Principal Findings: CD4+CD25+ and CD4+CD25neg T cells were isolated from PBMC of normal controls (n = 21)\ud using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1–100 nM) was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/ mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4+CD25high and CD4+CD25neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4+CD25neg or CD8+CD25neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4+CD25+ T cells in the presence of 1–100 nM RAPA (p,0.001). RAPA-expanded Treg were largely CD4+CD25highFoxp3+ cells and were resistant to apoptosis, while CD4+CD25neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4+CD25neg cells. Activated Treg6RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/ mTOR pathway.\ud Conclusions/Significance: RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation

    Splenic CD8(+) T cells secrete TGF-beta 1 to exert suppression in mice with anterior chamber-associated immune deviation

    Get PDF
    Background CD8(+) regulatory T cells (Treg) have been considered to be involved in a model of ocular-induced tolerance, known as anterior chamber-associated immune deviation (ACAID). The mechanisms of suppression by CD8(+) T cells in ACAID remain only poorly understood. TGF-beta 1 is considered as an inhibitory cytokine for immunosuppression in some models. The production of TGF-beta 1 by CD8(+) T cells in ACAID, and whether CD8+ T cells exert suppression through TGF-beta 1, is unknown. Methods The suppressive effect of CD8(+) T cells in ACAID mice was determined by a local adoptive transfer (LAT) assay. The production of TGF-beta 1 by CD8(+) T cells was measured by enzyme-linked immunosorbent assay (ELISA). Anti-TGF-beta 1 antibodies were used in the LAT assay to test if they could block the inhibitory effect of CD8(+) T cells. Results CD8(+) T cells from ACAID mice were shown to block the delayed-type hypersensitivity (DTH) response in an antigen-specific manner in a LAT assay. These CD8+ T cells secreted TGF-beta 1, and their suppression could partially be blocked by anti-TGF-beta 1 antibodies. Conclusions Our study confirms that CD8+ T cells from ACAID mice possess inhibitory properties. This population exerts part of its suppressive function via the production of TGF-beta 1

    T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells

    Get PDF
    Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al

    The roles of resident, central and effector memory CD4 T cells in protective immunity following infection or vaccination

    Get PDF
    Immunological memory provides rapid protection to pathogens previously encountered through infection or vaccination. CD4 T cells play a central role in all adaptive immune responses. Vaccines must, therefore, activate CD4 T cells if they are to generate protective immunity. For many diseases, we do not have effective vaccines. These include HIV, tuberculosis and malaria, which are responsible for many millions of deaths each year across the globe. CD4 T cells play many different roles during the immune response coordinating the actions of many other cells. In order to harness the diverse protective effects of memory CD4 T cells we need to understand how memory CD4 T cells are generated and how they protect the host. Here we review recent findings on the location of different subsets of memory CD4 T cells that are found in peripheral tissues (tissue resident memory T cells) and in the circulation (central and effector memory T cells). We discuss the generation of these cells and the evidence that demonstrates how they provide immune protection in animal and human challenge models
    corecore