7,849 research outputs found
Simulation of Mixed Critical In-vehicular Networks
Future automotive applications ranging from advanced driver assistance to
autonomous driving will largely increase demands on in-vehicular networks. Data
flows of high bandwidth or low latency requirements, but in particular many
additional communication relations will introduce a new level of complexity to
the in-car communication system. It is expected that future communication
backbones which interconnect sensors and actuators with ECU in cars will be
built on Ethernet technologies. However, signalling from different application
domains demands for network services of tailored attributes, including
real-time transmission protocols as defined in the TSN Ethernet extensions.
These QoS constraints will increase network complexity even further.
Event-based simulation is a key technology to master the challenges of an
in-car network design. This chapter introduces the domain-specific aspects and
simulation models for in-vehicular networks and presents an overview of the
car-centric network design process. Starting from a domain specific description
language, we cover the corresponding simulation models with their workflows and
apply our approach to a related case study for an in-car network of a premium
car
Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services
Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing
efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks
Flow reshaping is used in time-sensitive networks (as in the context of IEEE
TSN and IETF Detnet) in order to reduce burstiness inside the network and to
support the computation of guaranteed latency bounds. This is performed using
per-flow regulators (such as the Token Bucket Filter) or interleaved regulators
(as with IEEE TSN Asynchronous Traffic Shaping). Both types of regulators are
beneficial as they cancel the increase of burstiness due to multiplexing inside
the network. It was demonstrated, by using network calculus, that they do not
increase the worst-case latency. However, the properties of regulators were
established assuming that time is perfect in all network nodes. In reality,
nodes use local, imperfect clocks. Time-sensitive networks exist in two
flavours: (1) in non-synchronized networks, local clocks run independently at
every node and their deviations are not controlled and (2) in synchronized
networks, the deviations of local clocks are kept within very small bounds
using for example a synchronization protocol (such as PTP) or a satellite based
geo-positioning system (such as GPS). We revisit the properties of regulators
in both cases. In non-synchronized networks, we show that ignoring the timing
inaccuracies can lead to network instability due to unbounded delay in per-flow
or interleaved regulators. We propose and analyze two methods (rate and burst
cascade, and asynchronous dual arrival-curve method) for avoiding this problem.
In synchronized networks, we show that there is no instability with per-flow
regulators but, surprisingly, interleaved regulators can lead to instability.
To establish these results, we develop a new framework that captures industrial
requirements on clocks in both non-synchronized and synchronized networks, and
we develop a toolbox that extends network calculus to account for clock
imperfections.Comment: ACM SIGMETRICS 2020 Boston, Massachusetts, USA June 8-12, 202
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Scalability of broadcast performance in wireless network-on-chip
Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version
- …
