268 research outputs found

    Evolutionary Conservation of the Functional Modularity of Primate and Murine LINE-1 Elements

    Get PDF
    LINE-1 (L1) retroelements emerged in mammalian genomes over 80 million years ago with a few dominant subfamilies amplifying over discrete time periods that led to distinct human and mouse L1 lineages. We evaluated the functional conservation of L1 sequences by comparing retrotransposition rates of chimeric human-rodent L1 constructs to their parental L1 counterparts. Although amino acid conservation varies from ∼35% to 63% for the L1 ORF1p and ORF2p, most human and mouse L1 sequences can be functionally exchanged. Replacing either ORF1 or ORF2 to create chimeric human-mouse L1 elements did not adversely affect retrotransposition. The mouse ORF2p retains retrotransposition-competency to support both Alu and L1 mobilization when any of the domain sequences we evaluated were substituted with human counterparts. However, the substitution of portions of the mouse cys-domain into the human ORF2p reduces both L1 retrotransposition and Alu trans-mobilization by 200–1000 fold. The observed loss of ORF2p function is independent of the endonuclease or reverse transcriptase activities of ORF2p and RNA interaction required for reverse transcription. In addition, the loss of function is physically separate from the cysteine-rich motif sequence previously shown to be required for RNP formation. Our data suggest an additional role of the less characterized carboxy-terminus of the L1 ORF2 protein by demonstrating that this domain, in addition to mediating RNP interaction(s), provides an independent and required function for the retroelement amplification process. Our experiments show a functional modularity of most of the LINE sequences. However, divergent evolution of interactions within L1 has led to non-reciprocal incompatibilities between human and mouse ORF2 cys-domain sequences

    Characterization of LINE-1 Ribonucleoprotein Particles

    Get PDF
    The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition

    The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition

    Get PDF
    Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing

    The ORF1 Protein Encoded by LINE-1: Structure and Function During L1 Retrotransposition

    Get PDF
    LINE-1, or L1 is an autonomous non-LTR retrotransposon in mammals. Retrotransposition requires the function of the two, L1-encoded polypeptides, ORF1p and ORF2p. Early recognition of regions of homology between the predicted amino acid sequence of ORF2 and known endonuclease and reverse transcriptase enzymes led to testable hypotheses regarding the function of ORF2p in retrotransposition. As predicted, ORF2p has been demonstrated to have both endonuclease and reverse transcriptase activities. In contrast, no homologs of known function have contributed to our understanding of the function of ORF1p during retrotransposition. Nevertheless, significant advances have been made such that we now know that ORF1p is a high affinity RNA binding protein that forms a ribonucleoprotein particle together with L1 RNA. Furthermore, ORF1p is a nucleic acid chaperone and this nucleic acid chaperone activity is required for L1 retrotransposition

    In vivo RNA localization of I factor, a non-LTR retrotransposon, requires a cis-acting signal in ORF2 and ORF1 protein

    Get PDF
    According to the current model of non-LTR retrotransposon (NLR) mobilization, co-expression of the RNA transposition intermediate, and the proteins it encodes (ORF1p and ORF2p), is a requisite for the formation of cytoplasmic ribonucleoprotein complexes which contain necessary elements to complete a retrotransposition cycle later in the nucleus. To understand these early processes of NLR mobilization, here we analyzed in vivo the protein and RNA expression patterns of the I factor, a model NLR in Drosophila. We show that ORF1p and I factor RNA, specifically produced during transposition, are co-expressed and tightly co-localize with a specific pattern (Loc+) exclusively in the cytoplasm of germ cells permissive for retrotransposition. Using an ORF2 mutated I factor, we show that ORF2p plays no role in the Loc+ patterning. With deletion derivatives of an I factor we define an RNA localization signal required to display the Loc+ pattern. Finally, by complementation experiments we show that ORF1p is necessary for the efficient localization of I factor RNA. Our data suggest that ORF1p is involved in proper folding and stabilization of I factor RNA for efficient targeting, through Loc+ patterning, to the nuclear neighborhood where downstream steps of the retrotransposition process occur

    Characterization of an active LINE-1 in the naked mole-rat genome.

    Get PDF
    Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-living rodent species. A reason for their long lifespan is pronounced cancer resistance. Therefore, researchers believe that NMRs have unknown secrets of cancer resistance and seek to find them. Here, to reveal the secrets, we noticed a retrotransposon, long interspersed nuclear element 1 (L1). L1s can amplify themselves and are considered endogenous oncogenic mutagens. Since the NMR genome contains fewer L1-derived sequences than other mammalian genomes, we reasoned that the retrotransposition activity of L1s in the NMR genome is lower than those in other mammalian genomes. In this study, we successfully cloned an intact L1 from the NMR genome and named it NMR-L1. An L1 retrotransposition assay using the NMR-L1 reporter revealed that NMR-L1 was active retrotransposon, but its activity was lower than that of human and mouse L1s. Despite lower retrotrasposition activity, NMR-L1 was still capable of inducing cell senescence, a tumor-protective system. NMR-L1 required the 3' untranslated region (UTR) for retrotransposition, suggesting that NMR-L1 is a stringent-type of L1. We also confirmed the 5' UTR promoter activity of NMR-L1. Finally, we identified the G-quadruplex structure of the 3' UTR, which modulated the retrotransposition activity of NMR-L1. Taken together, the data indicate that NMR-L1 retrotranspose less efficiently, which may contribute to the cancer resistance of NMRs

    Feedback inhibition of L1 and alu retrotransposition through altered double strand break repair kinetics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cells adapt to various chronic toxic exposures in a multitude of ways to minimize further damage and maximize their growth potential. Expression of L1 elements in the human genome can be greatly deleterious to cells, generating numerous double strand breaks (DSBs). Cells have been reported to respond to chronic DSBs by altering the repair of these breaks, including increasing the rate of homology independent DSB repair. Retrotransposition is strongly affected by proteins involved in DSB repair. Therefore, L1 expression has the potential to be a source of chronic DSBs and thus bring about the changes in cellular environment that could ultimately restrict its own retrotransposition.</p> <p>Results</p> <p>We demonstrate that constitutive L1 expression leads to quicker DSB repair and decreases in the retrotransposition potential of L1 and other retrotransposons dependent on L1 expression for their mobility. This cellular adaptation results in reduced sensitivity to L1 induced toxicity. These effects can be induced by constitutive expression of the functional L1 ORF2 alone, but not by the constitutive expression of an L1 open reading frame 2 with mutations to its endonuclease and reverse transcriptase domains. This adaptation correlates with the relative activity of the L1 introduced into the cells.</p> <p>Conclusions</p> <p>The increased number of DSBs resulting from constitutive expression of L1 results in a more rapid rate of repair. The cellular response to this L1 expression also results in attenuation of retrotransposition and reduced sensitivity of the cells to negative consequences of L1 ORF2 expression. The influence does not appear to be through RNA interference. We believe that the increased rate of DSB repair is the most likely cause of the attenuation of retrotransposition. These alterations act as a fail safe mechanism that allows cells to escape the toxicity associated with the unchecked L1 expression. This gives cells that overexpress L1, such as tumor cells, the ability to survive the high levels of expression. However, the increased rate of break repair may come at the cost of accuracy of repair of the lesion, resulting in increased genomic instability.</p

    LINE-1 ORF2p expression is nearly imperceptible in human cancers

    Get PDF
    Background Long interspersed element-1 (LINE-1, L1) is the major driver of mobile DNA activity in modern humans. When expressed, LINE-1 loci produce bicistronic transcripts encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Many types of human cancers are characterized by L1 promoter hypomethylation, L1 transcription, L1 ORF1p protein expression, and somatic L1 retrotransposition. ORF2p encodes the endonuclease and reverse transcriptase activities required for L1 retrotransposition. Its expression is poorly characterized in human tissues and cell lines. Results We report mass spectrometry-based tumor proteome profiling studies wherein ORF2p eludes detection. To test whether ORF2p could be detected with specific reagents, we developed and validated five rabbit monoclonal antibodies with immunoreactivity for specific epitopes on the protein. These reagents readily detect ectopic ORF2p expressed from bicistronic L1 constructs. However, endogenous ORF2p is not detected in human tumor samples or cell lines by western blot, immunoprecipitation, or immunohistochemistry despite high levels of ORF1p expression. Moreover, we report endogenous ORF1p-associated interactomes, affinity isolated from colorectal cancers, wherein we similarly fail to detect ORF2p. These samples include primary tumors harboring hundreds of somatically acquired L1 insertions. The new data are available via ProteomeXchange with identifier PXD013743. Conclusions Although somatic retrotransposition provides unequivocal genetic evidence for the expression of ORF2p in human cancers, we are unable to directly measure its presence using several standard methods. Experimental systems have previously indicated an unequal stoichiometry between ORF1p and ORF2p, but in vivo, the expression of these two proteins may be more strikingly uncoupled. These findings are consistent with observations that ORF2p is not tolerable for cell growth

    Retrotransposition and Ageing-associated Neuronal Function Decline

    Get PDF
    The world population is progressively ageing. It is estimated that by 2050, almost onefifth of the world population will be aged 65 years or more. Despite the significant increases in life expectancy observed in the last century, health span remained unchanged. Therefore, people live longer but in suboptimal conditions, which frequently lead to the development of age-related diseases, like neurodegenerative diseases. Understanding the molecular and cellular mechanisms underlying ageing and neurodegeneration is crucial and could provide the means to delay, mitigate or even revert the deteriorating e↵ects associated with age-related neurodegeneration. Recent studies have correlated increased expression of retrotransposable elements (REs) with age, which is likely due to the tendency of RE silencing mechanisms to fail with age. Furthermore, it was reported in flies that young individuals with a neurodegenerative decline had premature expression of REs in their brain. However, it remains unclear whether RE expression and mobilization are the cause or a consequence of the age-associated neuron functional decline. The aim of this dissertation is to determine if RE expression in the central nervous system causes an age-associated neuronal function decline. To answer this, we developed a heterologous and naïve inducible RE system that allows specific expression of a human long interspersed nuclear element 1 (LINE-1 or L1) in Drosophila melanogaster neurons. Negative geotaxis assays were performed in flies aged 2, 20, and 40 days after eclosion to assess the age-associated neurofunctional decline. Results revealed that the forced expression of L1 in neurons throughout lifespan does not a↵ect neuronal function. However, both in vivo and in vitro experiments failed to demonstrate retrotransposition events in the fly. These findings suggest that additional human factors are required in L1 retrotransposition. Future studies will focus on determining retrotransposition capacity of L1 in the fly genome
    corecore