32 research outputs found

    Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer

    Get PDF
    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer

    The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition

    Get PDF
    Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing

    Characterization of LINE-1 Ribonucleoprotein Particles

    Get PDF
    The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition

    Discovery of short pseudogenes derived from messenger RNAs

    Get PDF
    More than 40% of the human genome is generated by retrotransposition, a series of in vivo processes involving reverse transcription of RNA molecules and integration of the transcripts into the genomic sequence. The mechanism of retrotransposition, however, is not fully understood, and additional genomic elements generated by retrotransposition may remain to be discovered. Here, we report that the human genome contains many previously unidentified short pseudogenes generated by retrotransposition of mRNAs. Genomic elements generated by non-long terminal repeat retrotransposition have specific sequence signatures: a poly-A tract that is immediately downstream and a pair of duplicated sequences, called target site duplications (TSDs), at either end. Using a new computer program, TSDscan, that can accurately detect pseudogenes based on the presence of the poly-A tract and TSDs, we found 654 short (≤300 bp), previously unknown pseudogenes derived from mRNAs. Comprehensive analyses of the pseudogenes that we identified and their parent mRNAs revealed that the pseudogene length depends on the parent mRNA length: long mRNAs generate more short pseudogenes than do short mRNAs. To explain this phenomenon, we hypothesize that most long mRNAs are truncated before they are reverse transcribed. Truncated mRNAs would be rapidly degraded during reverse transcription, resulting in the generation of short pseudogenes

    L1 retrotransposition in the soma: a field jumping ahead

    Get PDF
    Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition

    Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing

    Get PDF
    Long interspersed nuclear elements-1 (L1s) are a large family of retrotransposons. Retrotransposons are repetitive sequences that are capable of autonomous mobility via a copy-and-paste mechanism. In most copy events, only the L1 sequence is inserted, however, they can also mobilize the flanking non-repetitive region by a process known as 3' transduction. L1 insertions can contribute to genome plasticity and cause potentially tumorigenic genomic instability. However, detecting the activity of a particular source L1 and identifying new insertions stemming from it is a challenging task with current methodological approaches. We developed a long-distance inverse PCR (LDI-PCR) based approach to monitor the mobility of active L1 elements based on their 3' transduction activity. LDI-PCR requires no prior knowledge of the insertion target region. By applying LDI-PCR in conjunction with Nanopore sequencing (Oxford Nanopore Technologies) on one L1 reported to be particularly active in human cancer genomes, we detected 14 out of 15 3' transductions previously identified by whole genome sequencing in two different colorectal tumour samples. In addition we discovered 25 novel highly subclonal insertions. Furthermore, the long sequencing reads produced by LDI-PCR/Nanopore sequencing enabled the identification of both the 5' and 3' junctions and revealed detailed insertion sequence information.Peer reviewe

    Transposable elements in the mammalian embryo: pioneers surviving through stealth and service

    Full text link

    Extensive somatic L1 retrotransposition in colorectal tumors

    Get PDF
    L1 retrotransposons comprise 17% of the human genome and are its only autonomous mobile elements. Although L1-induced insertional mutagenesis causes Mendelian disease, their mutagenic load in cancer has been elusive. Using L1-targeted resequencing of 16 colorectal tumor and matched normal DNAs, we found that certain cancers were excessively mutagenized by human-specific L1s, while no verifiable insertions were present in normal tissues. We confirmed de novo L1 insertions in malignancy by both validating and sequencing 69/107 tumor-specific insertions and retrieving both 5′ and 3′ junctions for 35. In contrast to germline polymorphic L1s, all insertions were severely 5′ truncated. Validated insertion numbers varied from up to 17 in some tumors to none in three others, and correlated with the age of the patients. Numerous genes with a role in tumorigenesis were targeted, including ODZ3, ROBO2, PTPRM, PCM1, and CDH11. Thus, somatic retrotransposition may play an etiologic role in colorectal cancer
    corecore