43,957 research outputs found

    Impredicative Encodings of (Higher) Inductive Types

    Full text link
    Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant {\eta}-equalities and consequently do not admit dependent eliminators. To recover {\eta} and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1

    A Generalized Method for Integrating Rule-based Knowledge into Inductive Methods Through Virtual Sample Creation

    Get PDF
    Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for classification. Methods that use domain knowledge have been shown to perform better than inductive learners. However, there is no general method to include domain knowledge into all inductive learning algorithms as all hybrid methods are highly specialized for a particular algorithm. We present an algorithm that will take domain knowledge in the form of propositional rules, generate artificial examples from the rules and also remove instances likely to be flawed. This enriched dataset then can be used by any learning algorithm. Experimental results of different scenarios are shown that demonstrate this method to be more effective than simple inductive learning

    Relative Entropy and Inductive Inference

    Full text link
    We discuss how the method of maximum entropy, MaxEnt, can be extended beyond its original scope, as a rule to assign a probability distribution, to a full-fledged method for inductive inference. The main concept is the (relative) entropy S[p|q] which is designed as a tool to update from a prior probability distribution q to a posterior probability distribution p when new information in the form of a constraint becomes available. The extended method goes beyond the mere selection of a single posterior p, but also addresses the question of how much less probable other distributions might be. Our approach clarifies how the entropy S[p|q] is used while avoiding the question of its meaning. Ultimately, entropy is a tool for induction which needs no interpretation. Finally, being a tool for generalization from special examples, we ask whether the functional form of the entropy depends on the choice of the examples and we find that it does. The conclusion is that there is no single general theory of inductive inference and that alternative expressions for the entropy are possible.Comment: Presented at MaxEnt23, the 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods (August 3-8, 2003, Jackson Hole, WY, USA

    Bounded Quantifier Instantiation for Checking Inductive Invariants

    Full text link
    We consider the problem of checking whether a proposed invariant φ\varphi expressed in first-order logic with quantifier alternation is inductive, i.e. preserved by a piece of code. While the problem is undecidable, modern SMT solvers can sometimes solve it automatically. However, they employ powerful quantifier instantiation methods that may diverge, especially when φ\varphi is not preserved. A notable difficulty arises due to counterexamples of infinite size. This paper studies Bounded-Horizon instantiation, a natural method for guaranteeing the termination of SMT solvers. The method bounds the depth of terms used in the quantifier instantiation process. We show that this method is surprisingly powerful for checking quantified invariants in uninterpreted domains. Furthermore, by producing partial models it can help the user diagnose the case when φ\varphi is not inductive, especially when the underlying reason is the existence of infinite counterexamples. Our main technical result is that Bounded-Horizon is at least as powerful as instrumentation, which is a manual method to guarantee convergence of the solver by modifying the program so that it admits a purely universal invariant. We show that with a bound of 1 we can simulate a natural class of instrumentations, without the need to modify the code and in a fully automatic way. We also report on a prototype implementation on top of Z3, which we used to verify several examples by Bounded-Horizon of bound 1

    Signatures and Induction Principles for Higher Inductive-Inductive Types

    Full text link
    Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code
    corecore