20,976 research outputs found
Partial match queries in relaxed K-dt trees
The study of partial match queries on random hierarchical multidimensional data structures dates back to Ph. Flajolet and C. Puech’s 1986 seminal paper on partial match retrieval. It was not until recently that fixed (as opposed to random) partial match queries were studied for random relaxed K-d trees, random standard K-d trees, and random 2-dimensional quad trees. Based on those results it seemed
natural to classify the general form of the cost of fixed partial match queries into two families: that of either random hierarchical structures or perfectly balanced structures, as conjectured by Duch, Lau and Martínez (On the Cost of Fixed Partial Queries in K-d trees Algorithmica, 75(4):684–723, 2016). Here we show that the conjecture just mentioned does not hold by introducing relaxed K-dt trees and providing the average-case analysis for random partial match queries as well as some advances on the average-case analysis for fixed partial match queries on them. In fact this cost –for fixed partial match queries– does not follow the conjectured forms.Peer ReviewedPostprint (author's final draft
Correlation, hierarchies, and networks in financial markets
We discuss some methods to quantitatively investigate the properties of
correlation matrices. Correlation matrices play an important role in portfolio
optimization and in several other quantitative descriptions of asset price
dynamics in financial markets. Specifically, we discuss how to define and
obtain hierarchical trees, correlation based trees and networks from a
correlation matrix. The hierarchical clustering and other procedures performed
on the correlation matrix to detect statistically reliable aspects of the
correlation matrix are seen as filtering procedures of the correlation matrix.
We also discuss a method to associate a hierarchically nested factor model to a
hierarchical tree obtained from a correlation matrix. The information retained
in filtering procedures and its stability with respect to statistical
fluctuations is quantified by using the Kullback-Leibler distance.Comment: 37 pages, 9 figures, 3 table
SenseCam image localisation using hierarchical SURF trees
The SenseCam is a wearable camera that automatically takes photos of the wearer's activities, generating thousands of images per day.
Automatically organising these images for efficient search and retrieval is a challenging task, but can be simplified by providing
semantic information with each photo, such as the wearer's location during capture time. We propose a method for automatically determining the wearer's location using an annotated image database, described using SURF interest point descriptors. We show that SURF out-performs SIFT in matching SenseCam images and that matching can be done efficiently using hierarchical trees of SURF descriptors. Additionally, by re-ranking the top images using bi-directional SURF matches, location matching performance is improved further
Hierarchical mutual information for the comparison of hierarchical community structures in complex networks
The quest for a quantitative characterization of community and modular
structure of complex networks produced a variety of methods and algorithms to
classify different networks. However, it is not clear if such methods provide
consistent, robust and meaningful results when considering hierarchies as a
whole. Part of the problem is the lack of a similarity measure for the
comparison of hierarchical community structures. In this work we give a
contribution by introducing the {\it hierarchical mutual information}, which is
a generalization of the traditional mutual information, and allows to compare
hierarchical partitions and hierarchical community structures. The {\it
normalized} version of the hierarchical mutual information should behave
analogously to the traditional normalized mutual information. Here, the correct
behavior of the hierarchical mutual information is corroborated on an extensive
battery of numerical experiments. The experiments are performed on artificial
hierarchies, and on the hierarchical community structure of artificial and
empirical networks. Furthermore, the experiments illustrate some of the
practical applications of the hierarchical mutual information. Namely, the
comparison of different community detection methods, and the study of the
consistency, robustness and temporal evolution of the hierarchical modular
structure of networks.Comment: 14 pages and 12 figure
- …
