Explaining and Reducing Urban Heat Islands Through Machine Learning: Evidence from New York City

Abstract

Urban heat islands (UHIs) have intensified in rapidly urbanizing regions like New York, exacerbating thermal discomfort, public health risks, and energy consumption. While previous research has highlighted various environmental and socioeconomic contributors, most existing studies lack interpretable, fine-scale models capable of quantifying the effects of specific drivers—limiting their utility for targeted planning. To address this challenge, we develop an interpretable machine learning framework using Random Forest and XGBOOST to predict land surface temperature across 1800+ census tracts in the New York metropolitan area, incorporating vegetation indices, water proximity, urban morphology, and socioeconomic factors. Both models performed strongly (mean R<sup>2</sup> ≈ 0.90), with vegetation coverage and water proximity emerging as the most influential cooling factors, while built form features played supporting roles. Socioeconomic vulnerability indicators showed weak correlations with temperature, suggesting a relatively equitable thermal landscape. Optimization simulations further revealed that increasing vegetation to a threshold level could lower average surface temperatures by up to 6.38 °C, with additional but smaller gains achievable through adjustments to water access and urban form. These findings provide evidence-based guidance for climate-adaptive urban design and green infrastructure planning. More broadly, the study illustrates the potential of explainable machine learning to support data-driven environmental interventions in complex urban systems

    Similar works

    This paper was published in TSpace (University of Toronto).

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.