The aim of this study was to assess aquifer salinity risk by identifying high-risk land-use zones and proposing a new paradigm for groundwater resource management under salinization pressure. Salinity risk modeling was conducted with consideration of land-use patterns and agricultural production in the study region. The results revealed that approximately 26% of the aquifer lies within high-risk salinity zones. To mitigate this risk, three management strategies were evaluated: water balancing, crop pattern adaptation, and aquifer recharge. Implementation of these strategies reduced the extent of high and very high salinity risk areas by 6%, 9%, and 12.5%, respectively. Similarly, the maximum intensity of salinity risk decreased by 13%, 35%, and 52%, while the average intensity declined by 9%, 14%, and 55% under the balancing, adaptation, and recharge scenarios, respectively. These findings demonstrate that integrated groundwater management approaches, particularly recharge enhancement, can substantially reduce salinity risk and improve the resilience of coastal aquifers
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.