High performance polyimides for additive manufacturing: A critical review

Abstract

High performance polymers (HPPs), particularly polyimides (PIs), including both thermosetting and thermoplastic types, exhibit remarkable properties such as exceptional mechanical properties, outstanding thermal stability, and inherent flame retardancy. PIs are lightweight and potentially economical alternatives to metal based materials used in demanding applications, such as aerospace, transportation, and defense. However, processing PIs into the desired complex shapes is a significant challenge owing to their high melting temperature, high melt flow viscosity, and very narrow processing temperature window. Additive manufacturing (AM) techniques present an important avenue for processing such materials and emerged as a revolutionary approach to overcome these limitations, offering unprecedented design flexibility, reduced material waste, and the capability for rapid prototyping and production. Despite these advantages, AM of PIs has received considerably less attention, primarily due to significant processing challenges including material printability, thermal management complexities, and dimensional accuracy challenges that have hindered further advancements in this field. This comprehensive review explores the evolution and current status of polyimides additive manufacturing, providing insights into their chemistry, structural modifications, and detailed structure-property relationships. Various AM techniques including vat photopolymerization, material extrusion, direct ink writing, material jetting along with hybrid and emerging approaches are critically discussed, highlighting recent innovations, key challenges, and strategic solutions to enhance processing capabilities. Furthermore, the review identifies prospective research directions, emphasizing the potential for multifunctional and stimuli-responsive polyimides that could revolutionize next-generation applications. Overall, this review aims to stimulate further advancements in polyimide based additive manufacturing, fostering its broader industrial adoption and facilitating significant developments in high performance polymer technology.</p

Similar works

Full text

thumbnail-image

Research Repository RMIT University

redirect
Last time updated on 21/01/2026

This paper was published in Research Repository RMIT University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY 4.0