Low-frequency time-series (e.g., quarterly data) are often treated as benchmarks for interpolating to higher frequencies, since they generally exhibit greater precision and accuracy in contrast to their high-frequency counterparts (e.g., monthly data) reported by governmental bodies. An array of regression-based methods have been proposed in the literature which aim to estimate a target high-frequency series using higher frequency indicators. However, in the era of big data and with the prevalence of large volumes of administrative data-sources there is a need to extend traditional methods to work in high-dimensional settings, i.e., where the number of indicators is similar or larger than the number of low-frequency samples. The package DisaggregateTS includes both classical regressions-based disaggregation methods alongside recent extensions to high-dimensional settings. This paper provides guidance on how to implement these methods via the package in R, and demonstrates their use in an application to disaggregating CO2 emissions
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.