Connectivity Determination Algorithm for Complex Directed Networks

Abstract

Connectivity characterizes the ability of information transmission in systems modeled by complex networks. It is essential to develop an efficient connectivity determination algorithm with low time complexity and minimal storage requirements. To fulfill this need, a connectivity determination algorithm is designed by incorporating Tarjan's algorithm to identify strongly connected components and leveraging a depth-first search idea to traverse the reachability. This algorithm can ascertain strong connectivity, unilateral connectivity, and weak connectivity of complex directed networks. Besides, the accessibility matrix of complex directed networks is computed and visualized through an interface. As this algorithm relies on only two depth-first searches to accomplish connectivity determination tasks, its computational complexity does not exceed O(n2), where n denotes the number of network nodes. Experiments carried out on some specific networks reveal that the probability of network connections decreases with the increasing number of nodes in directed injective graphs, while in Erdős–Rényi graphs, the likelihood of connections increases as the number of nodes increases. Finally, a comparative example and an application example are provided to demonstrate the effectiveness of the algorithm program.</p

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 28/12/2025

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.