Convex body domination for rough singular integrals

Abstract

Publisher Copyright: © 2025 The AuthorConvex body domination is a technique, where operators acting on vector-valued functions are estimated via certain convex body averages of the input functions. This domination lets one deduce various matrix weighted bounds for these operators and their commutators. In this paper, we extend the sparse domination results for rough singular integrals due to Conde-Alonso, Culiuc, Di Plinio and Ou to the convex body setting. In particular, our methods apply to homogeneous rough singular integrals with unbounded angular part. We also note that convex body domination implies new two weight commutator bounds even in the scalar case.Peer reviewe

Similar works

Full text

thumbnail-image

Aaltodoc Publication Archive

redirect
Last time updated on 27/12/2025

This paper was published in Aaltodoc Publication Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by/4.0/