Automated classification of subsurface impact damage in thermoplastic composites using depth-resolved terahertz imaging and deep learning

Abstract

Reliable detection of barely visible impact damage is critical to ensure the structural integrity of composite components in service, particularly in safety-critical applications such as pressure vessels and transportation systems. This study presents a solution for detecting such damage in woven glass fiber-reinforced thermoplastic composites using terahertz (THz) time-of-flight tomography and convolutional neural networks. THz provides non-contact, non-ionizing, high-axial-resolution imaging of subsurface and back-surface damage, addressing key limitations of surface-based inspection methods. While THz imaging alone may not always permit conclusive damage identification, we bridge this gap by training neural network classifiers on depth-resolved THz B-scan images using ground truth from co-located X-ray micro-computed tomography. Among several pretrained architectures tested via transfer learning, DenseNet-121 exhibits the highest accuracy. The model remains robust even when trained on truncated B-scans excluding surface indentation features, confirming its ability to detect structural anomalies located internally or on the back surface. This is particularly relevant for applications where back-side access is not feasible. Experimental validation is performed on impacted glass-fiber-reinforced thermoplastic coupons prepared in accordance with ASTM D7136, with damage severity quantified through force–displacement data and micro-tomographic analysis. Labeling for supervised learning conforms to acceptance criteria from industrial standards for composite pressure vessels (ASME BPVC Section X, CGA C-6.2), ensuring regulatory alignment and enabling deployment in quality control workflows. The proposed method minimizes the need for expert interpretation or secondary validation and offers direct applicability to in-service inspection and manufacturing quality control

Similar works

Full text

thumbnail-image

SAM : Science Arts et Métiers

redirect
Last time updated on 02/12/2025

This paper was published in SAM : Science Arts et Métiers.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.