Production of Highly Efficient Pt/C for PEM Fuel Cell Applications

Abstract

PEM fuel cell technologies have emerged as promising candidates for advancing sustainable energy solutions, primarily due to their exceptional efficiency and minimal environmental impact. However, the widespread commercialization of fuel cells is hindered by the high cost and limited availability of platinum catalysts, which play a critical role in facilitating electrochemical reactions. This research mainly focused on investigating innovative solutions aiming to mitigate platinum loading while simultaneously preserving or potentially enhancing their performance. To this end, the impact of two distinct surfactants, Tween 40 and Tween 80, was examined to assess their influence on the synthesis and characteristics of platinum nanoparticles immobilized on carbon supports. Subsequently, their electrochemical activities were compared. The catalysts were synthesized using the polyol method with the incorporation of surfactants, and their performance was compared with that of Pt/C catalysts without surfactants. TGA analysis indicated a significant reduction of approximately 12% in the Pt content of the catalyst synthesized using Tween 80 surfactant. However, CV analysis revealed a remarkable increase of 85% in the ECSA for the same catalyst. Furthermore, significant improvements in the performance of this catalyst were also observed in the single-cell test setup. The high performance achieved with a lower Pt content in the catalyst layer highlights its potential for large-scale commercialization. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Similar works

Full text

thumbnail-image

Sakarya University of Applied Sciences AXSIS

redirect
Last time updated on 01/12/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: Open access