International audienceThis work studies a combinatorial optimization problem encountered in industrial production planning: the single-item multi-resource lot-sizing problem with inventory bounds and lost sales. The demand to be satisfied by the production plan is subject to uncertainty and only probabilistically known. We consider a multi-stage decision process with a Decision-Hazard-Decision information structure in which decisions are made at each stage both before and after the uncertainty is revealed. Such a setting has not yet been studied for stochastic lot-sizing problems, and the resulting problem is modeled as a multi-stage stochastic integer program. We propose a solution approach based on an approximate stochastic dynamic programming algorithm. It relies on a decomposition of the problem into single-stage sub-problems and on the estimation at each stage of the expected future costs. Due to the Decision-Hazard-Decision information structure, each nested single-stage sub-problem is itself a two-stage stochastic integer program. We therefore introduce a Benders decomposition scheme to reduce the computational effort required to solve each nested sub-problem, and present a specialpurpose polynomial-time algorithm to efficiently solve the single-scenario second-stage sub-problems involved in the Benders decomposition. The results of extensive simulation experiments carried out on large-size randomly generated instances are reported. They demonstrate the practical benefit, in terms of the actual production cost, of using the proposed approach as compared to a naive deterministic optimization approach based on the expected demand
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.