Beyond Nearest-Neighbor Connections in Device-to-Device Cellular Networks

Abstract

Device-to-device (D2D) communication enhances network efficiency by enabling direct, low-latency links between nearby users or devices. While most existing research assumes that D2D connections occur with the nearest neighbor, this assumption often fails in real-world scenarios-such as dense indoor environments, smart buildings, and industrial IoT deployments-due to factors like channel variability, physical obstructions, or limited user participation. In this paper, we investigate the performance implications of connecting to the n-th nearest neighbor in a cellular network supporting underlay D2D communication. Using a stochastic geometry framework, we derive and analyze key performance met-rics, including the coverage probability and average data rate, for both D2D and cellular links under proximity-aware connection strategies. Our results reveal that non-nearest-neighbor associations are not only common but sometimes necessary for maintaining reliable connectivity in highly dense or constrained spaces. These findings are directly relevant to IoT-enhanced localization systems, where fallback mechanisms and adaptive pairing are essential for communication resilience. This work contributes to the development of proximity-aware and spatially adaptive D2D frameworks for next-generation smart environments and 5G-and-beyond wireless networks

Similar works

Full text

thumbnail-image

UEL Research Repository at University of East London

redirect
Last time updated on 21/10/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by/4.0/