Photosynthesis–irradiance (PI) relationships are important for phytoplankton ecology and quantifying carbon fixation rates in the environment. However, the parameters of PI relationships are typically unknown across space and time. Here we use machine learning, satellite remote‐sensing, and a database of in situ PI relationships to build models that predict the seasonal cycle of PI parameters as a function of satellite‐observed variables. Using only surface light, temperature, and chlorophyll, we achieve an R 2 of 58% for predicting photosynthesis rates at saturating light () and an R 2 of 78% for predicting the light saturation parameter (). Predictability is maximized when averaging environmental covariates over 30‐d () and 25‐d () timescales, indicating that environmental history and community turnover timescales are important for predicting in situ PI relationships. These results will help improve the parameterization of satellite‐based primary production models and quantify emergent environmental integration timescales in photosynthetic communities
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.