Computational design and fabrication of modular robots with untethered control

Abstract

Natural organisms utilize distributed actuation through their musculoskeletal systems to adapt their gait for traversing diverse terrains or to morph their bodies for varied tasks. A longstanding challenge in robotics is to emulate this capability of natural organisms, which has motivated the development of numerous soft robotic systems. However, such systems are generally optimized for a single functionality, lack the ability to change form or function on demand, or remain tethered to bulky control systems. To address these limitations, we present a framework for designing and controlling robots that utilize distributed actuation. We propose a novel building block that integrates 3D-printed bones with liquid crystal elastomer (LCE) muscles as lightweight actuators, enabling the modular assembly of musculoskeletal robots. We developed LCE rods that contract in response to infrared radiation, thereby providing localized, untethered control over the distributed skeletal network and producing global deformations of the robot. To fully capitalize on the extensive design space, we introduce two computational tools: one for optimizing the robot's skeletal graph to achieve multiple target deformations, and another for co-optimizing skeletal designs and control gaits to realize desired locomotion. We validate our framework by constructing several robots that demonstrate complex shape morphing, diverse control schemes, and environmental adaptability. Our system integrates advances in modular material building, untethered and distributed control, and computational design to introduce a new generation of robots that brings us closer to the capabilities of living organisms

Similar works

Full text

thumbnail-image

ISTA Research Explorer (Institute of Science and Technology Austria)

redirect
Last time updated on 16/10/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess