In the present paper, we investigate 2-local linear operators on vector spaces. Sufficient conditions are obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do this, families of matrices of a certain type are selected and it is proved that every 2-local linear operator generated by these families is a linear operator. Based on these results we prove that each 2-local derivation of a finite-dimensional null-filiform Zinbiel algebra is a derivation. Also, we develop a method of construction of 2-local linear operators which are not linear operators. To this end, we select matrices of a certain type and using these matrices we construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear operator constructed using these matrices is not a linear operator. Applying this method we prove that each finite-dimensional filiform Zinbiel algebra has a 2-local derivation that is not a derivation. We also prove that each finite-dimensional naturally graded quasi-filiform Leibniz algebras of type I has a 2-local automorphism that is not an automorphism
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.