Personal Protective Equipment Completeness Monitoring System Using YOLO-Based Computer Vision

Abstract

Workplace safety in the construction sector remains a critical concern, primarily due to low compliance with Personal Protective Equipment (PPE) standards. To address this, this study develops and evaluates a real-time PPE monitoring system, conducting a comparative analysis of two state-of-the-art object detection models: YOLOv8s and YOLOv11s. The system is designed to detect three essential PPE items: helmets, masks, and vests, and both models were trained on a custom dataset of 9,202 augmented images over 200 epochs. The final evaluation on an unseen test set revealed highly competitive performance. While YOLOv8s achieved a marginally higher [email protected] (90.8%), YOLOv11s demonstrated superior precision (92.0%) and better performance on the stricter [email protected]:0.95 metric (54.4%). Based on this nuanced trade-off and its significantly higher computational efficiency (15% fewer parameters), YOLOv11s was selected as the optimal model. The chosen model achieved a real-time inference speed of approximately 112 FPS. A functional web-based prototype was developed using Flask to demonstrate the system\u27s practical application. These findings confirm that YOLOv11s offers a more balanced and efficient solution for automating PPE compliance monitoring and highlight that a holistic evaluation beyond a single metric is crucial for deploying robust computer vision systems in real-world safety applications.Workplace safety in the construction sector remains a critical concern, primarily due to low compliance with Personal Protective Equipment (PPE) standards. To address this, this study develops and evaluates a real-time PPE monitoring system, conducting a comparative analysis of two state-of-the-art object detection models: YOLOv8s and YOLOv11s. The system is designed to detect three essential PPE items: helmets, masks, and vests, and both models were trained on a custom dataset of 9,202 augmented images over 200 epochs. The final evaluation on an unseen test set revealed highly competitive performance. While YOLOv8s achieved a marginally higher [email protected] (90.8%), YOLOv11s demonstrated superior precision (92.0%) and better performance on the stricter [email protected]:0.95 metric (54.4%). Based on this nuanced trade-off and its significantly higher computational efficiency (15% fewer parameters), YOLOv11s was selected as the optimal model. The chosen model achieved a real-time inference speed of approximately 112 FPS. A functional web-based prototype was developed using Flask to demonstrate the system\u27s practical application. These findings confirm that YOLOv11s offers a more balanced and efficient solution for automating PPE compliance monitoring and highlight that a holistic evaluation beyond a single metric is crucial for deploying robust computer vision systems in real-world safety applications

Similar works

This paper was published in Jurnal Politeknik Negeri Batam (PoliBatam).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by-sa/4.0