The “histone code,” defined by the combinatorial patterns of post-translational modifications (PTMs) on histones, plays a pivotal role in chromatin structure and gene expression. Tools for the regioselective introduction of histone PTMs in living cells are critical for dissecting the functions of these epigenetic marks. Here, we report the design and development of three regioselective catalysts that acetylate distinct lysine residues (K43, K108, and K120) on histone H2B. Using a combination of molecular dynamics simulations of catalyst-nucleosome complexes and systematic experimental optimization of catalyst structures, we identified key design principles for achieving regioselectivity. Specifically, excluding highly reactive off-target lysine residues from the catalyst effective region (CER) while maintaining proximity to a target lysine residue proved crucial. Biochemical and cellular analyses of the catalytic histone acetylation revealed that each lysine acetylation elicited unique effects on the binding affinity and activity of nucleosome-interacting molecules, as well as on transcriptional programs and cellular phenotypes. These findings establish a framework for designing regioselective histone acetylation catalysts and advance our understanding of the regulatory mechanisms underlying histone PTMs.journal articl
Similar works
Full text
National Institute of Radiological Science: NIRS-Repository / 放射線医学総合研究所 学術機関リポジトリ
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.