Automation of etch pit analyses on solid-state nuclear track detectors with machine learning for laser-driven ion acceleration

Abstract

Solid-state nuclear track detectors (SSNTDs) are often used as ion detectors in laser-driven ion acceleration experiments and are considered to be the most reliable ion diagnostics since they are sensitive only to ions and measure ions one by one. However, the ion pit analyses require tremendous time and effort in chemical etching, microscope scanning, and ion pit identification by eyes. From a laser-driven ion acceleration experiment, there are typically millions of microscope images, and it is practically impossible to analyze all of them by hand. This research aims to improve the efficiency and automation of SSNTD analyses for laser-driven ion acceleration. We use two sets of data obtained from calibration experiments with a conventional accelerator where ions with known nuclides and energies are generated and from actual laser experiments, using SSNTDs. After chemical etching and scanning the SSNTDs with an optical microscope, we use machine learning to distinguish the ion etch pits from noises. From the results of the calibration experiment, we confirm highly accurate etch-pit detection with machine learning. We are also able to detect etch pits with machine learning from the laser-driven ion acceleration experiment, which is much noisier than calibration experiments. By using machine learning, we successfully identify ion etch pits ~ 10^5 from more than 10,000 microscope images with a precision of >~ 95%. A million microscope images can be examined with a recent entry-level computer within a day with high precision. Machine learning tremendously reduces the time consumption on ion etch pit analyses detected on SSNTDs.journal articl

    Similar works

    Full text

    thumbnail-image

    National Institute of Radiological Science: NIRS-Repository / 放射線医学総合研究所 学術機関リポジトリ

    redirect
    Last time updated on 05/10/2025

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.