research article review

Double-stranded RNA induces retinal pigment epithelium cell degeneration and inflammation

Abstract

RIG-I signaling has been previously implicated as a driver of inflammation to the retinal pigment epithelium (RPE) during age-related macular degeneration (AMD). Double-stranded RNA (dsRNA) is known to initiate RIG-I signaling and lead to a type I interferon response. We show through shRNA knockdown that RIG-I is essential for initiating an interferon response in iPS-RPE in response to both synthetic dsRNA-mimetic 3p-hpRNA and the double-stranded retrotransposable element Alu. Analysis of human tissue from patients suffering from AMD show accumulation of dsRNA, peaking at the geographic atrophy (GA) stage. Using a new murine model of 3p-hpRNA subretinal challenge to RPE cells, we confirmed that accumulation of dsRNA initiates a type I interferon response, as well as RPE and photoreceptor degeneration. Although RPE response to synthetic dsRNA was acute, extensive leukocyte migration was observed. The results from this study verify the importance of RIG-I signaling in regulating inflammation in the subretinal space and implicates dsRNA accumulation as a driver of AMD pathogenesis

Similar works

Full text

thumbnail-image

The Novartis Repository

redirect
Last time updated on 29/09/2025

This paper was published in The Novartis Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.