The synergistic strength-ductility mechanism of the in-situ constructed interfacial/intragranular hierarchical structure in nano particulate reinforced (TiB+La2_2O3_3)/Ti composites

Abstract

The strength-ductility trade-off has hindered the widespread application of powder metallurgy (PM) titanium matrix composites (TMCs). In-situ planting nano-particles as ultra-fine networks into the TMCs powder and constructing the interfacial/intragranular hierarchical microstructure have emerged as a promising strategy to overcome the strength-ductility trade-off. In the present work, we precisely controlled the distribution of the network nano-particles by adjusting the sintering temperatures and successfully transformed the ultrafine network into the interfacial/intragranular structure. The well-designed (TiB + La2_2O3_3)/IMI834 TMCs demonstrated exceptional mechanical properties, achieving a tensile strength of 1158 MPa while maintaining an elongation exceeding 8.6 %—performance comparable to wrought TMCs without requiring thermo-mechanical processing. The dislocation evolution and the slip activation behavior were investigated by in-situ synchrotron X-ray diffraction experiments and interrupted in-situ SEM-EBSD observations, which provided new insights into the strength-ductility synergy mechanism of the interfacial/intragranular nano-particles. These studies revealed that the hierarchical structure enhanced the dislocation storage capacity while simultaneously promoting slip activation. This dual effect facilitated multi-system sliding, which effectively optimized dislocation distribution and reduced stress concentration. This study visually elucidates the synergistic strength-ductility mechanism of the interfacial/intragranular hierarchical structure and establishes a straightforward and reliable approach for manufacturing high-performance PM TMCs

Similar works

Full text

thumbnail-image

DESY

redirect
Last time updated on 29/09/2025

This paper was published in DESY.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.