BoXHED2.0: Scalable Boosting of Dynamic Survival Analysis

Abstract

Modern applications of survival analysis increasingly involve time-dependent covariates.The Python package BoXHED2.0 (Boosted eXact Hazard Estimator with Dynamic covariates) is a tree-boosted hazard estimator that is fully nonparametric, and is applicable to survival settings far more general than right-censoring, including recurring events and competing risks. BoXHED2.0 is also scalable to the point of being on the same order of speed as parametric boosted survival models, in part because its core is written in C++ and it also supports the use of GPUs and multicore CPUs. BoXHED2.0 is available from PyPI and also from https://github.com/BoXHED

Similar works

This paper was published in Journal of Statistical Software.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by/4.0