A simulation framework for zoom-aided coverage path planning with UAV-mounted PTZ cameras

Abstract

Achieving energy-efficient aerial coverage remains a significant challenge for UAV-based missions, especially over hilly terrain where consistent ground resolution is needed. Traditional solutions use changes in altitude to compensate for elevation changes, which requires a significant amount of energy. This paper presents a new way to plan coverage paths (CPP) that uses real-time zoom control of a pan–tilt–zoom (PTZ) camera to keep the ground sampling distance (GSD)—the distance between two consecutive pixel centers projected onto the ground—constant without changing the UAV’s altitude. The proposed algorithm changes the camera’s focal length based on the height of the terrain. It only changes the altitude when the zoom limits are reached. Simulation results on a variety of terrain profiles show that the zoom-based CPP substantially reduces flight duration and path length compared to traditional altitude-based strategies. The framework can also be used with low-cost camera systems with limited zoom capability, thereby improving operational feasibility. These findings establish a basis for further development and field validation in upcoming research phases.Sensor

Similar works

This paper was published in CERES Research Repository (Cranfield Univ.).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by/4.0/