Complete solid-body rotation rate measurements of micro-plastic curved fibers in turbulence

Abstract

Abstract: In this study we quantify the uncertainty relative to a novel Lagrangian tracking technique to measure the complete solid-body rotation rate of anisotropic micro-plastic fibers. By exploiting their geometry—specifically, their elongation and curvature for tumbling and spinning rate measurements, respectively—we address a gap in the literature regarding the tracking of fibers’ unique orientation along their trajectories. The impact of fiber geometry and imaging parameters on the accuracy of the solid-body rotation rates measurements is investigated. The influence of spatial and temporal resolution on the measurement uncertainty is assessed on synthetic data. Experimental results obtained in a channel flow demonstrate the method’s potential to accurately detect rotations of fibers with lengths approaching the Kolmogorov scale

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università degli Studi di Udine

redirect
Last time updated on 10/09/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: license uri:http://creativecommons.org/licenses/by/4.0/