research article review journal article

Heterovalent-doping-induced ultrasensitive and highly exclusive ethylene sensor: Application to crop quality inspection

Abstract

peer reviewedA promising ethylene sensor based on Sb2MoO6 (SMO) with a permeable lamellar structure and tunable W dopants is proposed. The optimal 5 mol% W-doped SMO featuring atomically distributed heterovalent doping sites enables the ideal combination of high response (121.26/2.6 for 10/0.5 ppm), short response/recovery time (180 s/54 s for 10 ppm), low limit of detection (LoD) (23.18 ppb), excellent selectivity, good long-term stability (45 days), and robust performance in high humidity (LoD of 31.5 ppb at 80 % relative humidity). The rich W4+ doping-induced active sites are primarily responsible for the strengthened gas-sensing performances. Theoretical simulations reveal that W doping modulates the SMO lattice through substitutional and interstitial mechanisms, optimizing adsorption energy and charge transfer between ethylene and Mo sites, thereby resolving the trade-off between high response and recovery speed. Furthermore, the real-world application in detecting and differentiating moldy rice across storage periods underscores its potential for on-site quality monitoring in the grain industry. This work highlights the significant role of heteroatom doping in tailoring material properties, positioning W-doped SMO as a highly effective gas-sensing material for agricultural and environmental applications

Similar works

Full text

thumbnail-image

ORBi UMONS

redirect
Last time updated on 12/08/2025

This paper was published in ORBi UMONS.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.