Performance of continuous digital monitoring of vital signs with a wearable sensor in acute hospital settings

Abstract

Background: Continuous vital sign monitoring using wearable sensors has gained traction for the early detection of patient deterioration, particularly with the advent of virtual wards. Objective: The objective was to evaluate the reliability of a wearable sensor for monitoring heart rate (HR), respiratory rate (RR), and temperature in acutely unwell hospital patients and to identify the optimal time window for alert generation. Methods: A prospective cohort study recruited 500 patients in a single hospital. Sensor readings were compared to standard intermittent nurse observations using Bland–Altman plots to assess the limits of agreement. Results: HR demonstrated good agreement with nurse observations (intraclass correlation coefficient [ICC] = 0.66, r = 0.86, p < 0.001), with a mean difference of 3.63 bpm (95% LoA: −10.87 to 18.14 bpm). RR exhibited weaker agreement (ICC = 0.20, r = 0.18, p < 0.001), with a mean difference of −2.72 breaths per minute (95% LoA: −10.91 to 5.47 bpm). Temperature showed poor to fair agreement (ICC = 0.30, r = 0.39, p < 0.001), with a mean difference of −0.57 °C (95% LoA: −1.72 to 0.58 °C). A 10 min averaging window was identified as optimal, balancing data retention and real-time alerting. Conclusions: Wearable sensors demonstrate potential for reliable continuous monitoring of vital signs, supporting their future integration into real-world clinical practice for improved patient safety

Similar works

Full text

thumbnail-image

Spiral - Imperial College Digital Repository

redirect

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by/4.0/