A data augmentation strategy for deep neural networks with application to epidemic modelling

Abstract

In this work, we integrate the predictive capabilities of compartmental disease dynamics models with machine learning’s ability to analyze complex, high-dimensional data and uncover patterns that conventional models may overlook. Specifically, we present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced Susceptible-Infected-Recovered type model with social features, including a saturated incidence rate, to improve epidemic prediction and forecasting. Our results show that a robust data augmentation strategy trough suitable data-driven models can improve the reliability of Feed-Forward Neural Networks and Nonlinear Autoregressive Networks, providing a complementary strategy to Physics-Informed Neural Networks, particularly in settings where data augmentation from mechanistic models can enhance learning. This approach enhances the ability to handle nonlinear dynamics and offers scalable, data-driven solutions for epidemic forecasting, prioritizing predictive accuracy over the constraints of physics-based models. Numerical simulations of the lockdown and post-lockdown phase of the COVID-19 epidemic in Italy and Spain validate our methodology.</p

Similar works

Full text

thumbnail-image

Heriot Watt Pure

redirect
Last time updated on 31/07/2025

This paper was published in Heriot Watt Pure.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.