Multi-criteria decision making: sustainable water desalination

Abstract

With an increasingly more urbanised global population, surface water and groundwater resources are being/have become outpaced by growing demand. The oceans could address this pertinent scarcity issue, once their high-salinity content is removed. Water desalination could thus be a crucial pathway towards addressing global water scarcity. However, conventional desalination is known to be highly energy-intensive, with limited scalability and potentially significant negative environmental impacts. Multi-criteria Decision Making (MCDM) presents a novel approach towards sustainable water desalination based on sustainability-related criteria. The Fuzzy Analytical Hierarchy Process (FAHP) was implemented to determine the most optimal small-scale, modularised, and remote reverse osmosis (RO) desalination plant configurations. Twelve configurations were assessed, based on four plant capacities (50, 100, 150, and 200 m3/day) and three diesel-to-solar photovoltaic energy configurations (100–0%, 75–25%, and 60–40%). The hybridised diesel-to-solar configurations were generally ranked higher, particularly when less reliant on diesel, and at small(er) capacities, in terms of the criteria: sustainability, overall efficiency, and standalone potential while maintaining competitive costs. This can likely be attributed to their relatively lower fuel and energy consumption and associated costs. Further research should aim to consider additional criteria, such as battery cost, as well as life cycle assessments that include transportation-related costs/emissions

    Similar works

    Full text

    thumbnail-image

    Southampton (e-Prints Soton)

    redirect
    Last time updated on 31/07/2025

    This paper was published in Southampton (e-Prints Soton).

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.