Abstract

Critical-sized bone defects are unable to heal spontaneously and receive poor clinical prognosis due to limitations in modern treatment strategies. Next-generation therapies are applying biomaterials incorporating BMP-2 to effectively promote and support bone regeneration, but adverse effects are linked to uncontrolled BMP-2 egress from the biomaterial. Implementing extracellular matrix proteins to biomaterials is a favourable approach to alleviate these drawbacks, and self-assembling peptide hydrogels are rapidly emerging as modulable and versatile biomaterials. Here, we describe the creation of a tenascin-c-functionalised peptide hydrogel designed to regenerate critical-sized bone defects. A recombinant fragment of tenascin-c spanning from the 3rd to 5th fibronectin-like domains is integrated into the fibre network. We demonstrate that this nascent construct effectively retains BMP-2 to differentiate mesenchymal stem cells into mature osteoblasts and achieves complete unionisation of murine critical-sized bone defects under low BMP-2 dose. All in all, we demonstrate tenascin-c as a suitable candidate to functionalise biomaterials intended for bone engineering applications and the promising potential of self-assembling peptide hydrogels in treating critical-sized bone defects

    Similar works

    Full text

    thumbnail-image

    Enlighten

    redirect
    Last time updated on 21/07/2025

    This paper was published in Enlighten.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

    Licence: http://creativecommons.org/licenses/by/4.0/