A hybridizable discontinuous Galerkin method with transmission variables for time-harmonic electromagnetic problems

Abstract

The CHDG method is a hybridizable discontinuous Galerkin (HDG) finite element method suitable for the iterative solution of time-harmonic wave propagation problems. Hybrid unknowns corresponding to transmission variables are introduced at the element interfaces and the physical unknowns inside the elements are eliminated, resulting in a hybridized system with favorable properties for fast iterative solution. In this paper, we extend the CHDG method, initially studied for the Helmholtz equation, to the time-harmonic Maxwell equations. We prove that the local problems stemming from hybridization are well-posed and that the fixed-point iteration naturally associated to the hybridized system is contractive. We propose a 3D implementation with a discrete scheme based on nodal basis functions. The resulting solver and different iterative strategies are studied with several numerical examples using a high-performance parallel C++ code

Similar works

Full text

thumbnail-image

INRIA a CCSD electronic archive server

redirect
Last time updated on 13/07/2025

This paper was published in INRIA a CCSD electronic archive server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/OpenAccess