Synthesis of Solid-state NASICON Electrolytes for Sodium-ion Batteries

Abstract

This thesis aims to synthesise the sodium super ionic conductor (NASICON) solid-state electrolyte for sodium-ion battery applications using two methodologies: solid-state and sol synthesis. The objective is to develop NASICON with enhanced chemical properties and minimised secondary phases by employing less energy-intensive techniques. This involves transitioning from conventional oven heating to near-infrared (NIR) radiation sintering, achieved through the fabrication of NASICON as a thin film. All samples were characterised by x-ray diffraction (XRD) and scanning electron microscopy (SEM).NASICON was successfully synthesised using the solid-state technique, forming dense pellets (density: 2.80 g/cm3) that are 15 mm in diameter and 2 mm thick (±0.05 mm). The final sintering step was conducted in a tube furnace in an inert environment (argon) at 1180 ºC for 16 hours, with the total oven time for the process being 70 hours and only 1.5% weight fraction secondary phase of ZrO2. Alumina crucibles and a powder bed were used to prevent the pellet fusing to the crucible (Al3+ diffusion) and reduce sodium volatilisation.The sol method also successfully formed a NASICON powder with a low secondary phase content of <2%, aligned with literature values. The powder was prepared in a conventional oven (in air) with reduced sintering times of 3 hours and temperatures of 1000 ºC. Additionally, NASICON was synthesised as a dense 10 µm thin film on a quartz substrate, utilising a sol spray coating technique. The same sintering times were employed as the powder (3 hours) but at lower a lower temperature of 950 ºC. The spray coating technique allowed the film to dry on a hot plate reducing the overall oven heating time from 16 hours (powder) to 3 hours (thin film).NIR radiation was successfully employed to synthesise NASICON as a thin film, a novel technique that has not previously been used in this field. This significantly reduced sintering times to 60 seconds, and overall oven/NIR heating times to 2 hours 2 minutes

Similar works

This paper was published in Cronfa at Swansea University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.