With the development of transportation networks, countless trajectory data are accumulated, and understanding human mobility from traffic data could be helpful for smart cities, urban computing, and urban planning. Extracting valuable insights from traffic data, such as taxi trajectories, can significantly improve residents’ daily lives. There are many studies on spatiotemporal data mining. As we know, arrival prediction or regional function detection encompasses important tasks for traffic management and urban planning. However, trajectory data are often mutilated because of personal privacy and hardware limitations, i.e., we usually can only obtain partial trajectory information. In this paper, we develop an embedding method to predict the next arrival using the origin–destination (O-D) pair trajectory information and point of interest (POI) data. Moreover, the embedding information contains region latent features; thus, we also detect the regional function in this paper. Finally, we conduct a comprehensive experimental study on a real-world trajectory dataset. The experimental results demonstrate the benefit of predicting arrivals, and the embedding vectors can detect the regional function in a city
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.