Research software supporting the publication "AI-assisted Literature Screening with Empirical Validation in Reinforced Autoclaved Aerated Concrete Research"
This deposit contains the full Python code for AI-assisted approach described in ''AI-assisted Literature Screening with Empirical Validation in Reinforced Autoclaved Aerated Concrete Research." It includes six scripts: two parallel prompt modules for RAAC mention detection and definition extraction (core components); a seven-question defect-extraction script; and a data-aggregation script that produces a unified defect database. All scripts are versioned for reproducibility and require Python 3.11+, the Anthropic Claude 3 Opus API, and standard data-analysis libraries. A comprehensive README.md is included, detailing environment setup, dependency installation, API key configuration, and step-by-step execution instructions. The code is mirrored on GitHub for ongoing collaboration and version tracking. An interactive project overview and navigation interface is also provided via index.html on the project’s GitHub Pages site
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.