Graddiv-conforming spectral element method for fourth-order div problems

Abstract

This paper introduces a novel numerical method to solve fourth-order div problems using graddiv-conforming spectral elements on cuboidal meshes. We start by determining the continuity requirements for graddiv-conforming spectral elements, followed by constructing these elements using generalized Jacobi polynomials and the Piola transformation. The resulting basis functions exhibit a hierarchical structure, making them easily extendable to higher orders. We apply these graddiv-conforming spectral elements to solve the fourth-order div problem and present numerical examples to verify both the efficiency and effectiveness of the method.</p

Similar works

Full text

thumbnail-image

Discovery Research Portal

redirect
Last time updated on 02/06/2025

This paper was published in Discovery Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by-nc-nd/4.0/