Barycenter of the arithmetic-harmonic quantum divergence

Abstract

A notion of divergence is a very important and useful tool to measure the difference between probability distributions or between data (information). We consider a quantum divergence constructed by the difference of two-variable weighted arithmetic and harmonic means on the open convex cone of positive definite Hermitian matrices, called the arithmetic-harmonic quantum divergence. We see its invariance properties and study the barycenter minimizing the weighted sum of arithmetic-harmonic quantum divergences to given variables. We provide the lower bound for the barycenter of the arithmetic-harmonic quantum divergence in terms of Loewner order and its upper bound in terms of operator norm

Similar works

Full text

thumbnail-image

University of Wyoming Open Journals

redirect
Last time updated on 19/05/2025

This paper was published in University of Wyoming Open Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.